• Title/Summary/Keyword: 암반면 평가

Search Result 148, Processing Time 0.028 seconds

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

Removability and Stability Analysis Method of Rock Blocks Considering Discontinuity Persistence in Tunnel Constructions (터널시공에서의 불연속면의 연속성을 고려한 암반블럭의 거동성 및 안정성 해석기법)

  • Hwang, Jae-Yun;Ohnishi, Yuzo;Nishiyama, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • Previous analytical models for key blocks have been based on the assumption of infinite persistent discontinuities. In this paper, a key block analysis method considering the finite persistence of discontinuities is proposed as a stability evaluation method in tunnel constructions, and then applied to an actual example site. Three-dimensional rock block identification with consideration of the persistence of discontinuities is performed by using discontinuity disk model. The removability and stability analyses of rock blocks formed by the identification method are performed. The identification method can handle convex and concave shape blocks. In order to demonstrate the applicability of this developed numerical method to the stability evaluation in tunnel constructions, the analytical results are examined and compared one another.

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

Borehole Heater Test at KAERI Underground Research Tunnel (지하처분연구시설(KURT)에서의 시추공 히터 시험)

  • Kwon, S.;Lee, C.;Yoon, C.H.;Jeon, S.W.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.225-234
    • /
    • 2011
  • In this study, an in situ heater test for investigating the thermo-mechanical behavior related to heat flow was carried out. It was the first in situ heater test in Korea. For the test, an adequate design of heater, observation sensors, and data logging system was developed and installed with a consideration of the site condition and the test purposes. It was possible to observe that steep joints are overwhelmingly developed in the test area from a joint survey. The major rock and rock mass properties at the test site could be determined from the thermal and mechanical laboratory tests using the rock cores from the site. From the measured rock temperature distribution, it was possible to observe the influence of the rock joints and the heat flow through tunnel wall. When the heater temperature was maintained as $90^{\circ}C$, the rock temperature at 0.3 m from the heater hole was increased up to $40^{\circ}C$.

A Study on Estimating Shear Strength of Continuum Rock Slope (연속체 암반비탈면의 강도정수 산정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung;Hur, Ik;Lee, Jun-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.5-19
    • /
    • 2019
  • Considering the natural phenomenon in which steep slopes ($65^{\circ}{\sim}85^{\circ}$) consisting of rock mass remain stable for decades, slopes steeper than 1:0.5 (the standard of slope angle for blast rock) may be applied in geotechnical conditions which are similar to those above at the design and initial construction stages. In the process of analysing the stability of a good to fair continuum rock slope that can be designed as a steep slope, a general method of estimating rock mass strength properties from design practice perspective was required. Practical and genealized engineering methods of determining the properties of a rock mass are important for a good continuum rock slope that can be designed as a steep slope. The Genealized Hoek-Brown (H-B) failure criterion and GSI (Geological Strength Index), which were revised and supplemented by Hoek et al. (2002), were assessed as rock mass characterization systems fully taking into account the effects of discontinuities, and were widely utilized as a method for calculating equivalent Mohr-Coulomb shear strength (balancing the areas) according to stress changes. The concept of calculating equivalent M-C shear strength according to the change of confining stress range was proposed, and on a slope, the equivalent shear strength changes sensitively with changes in the maximum confining stress (${{\sigma}^{\prime}}_{3max}$ or normal stress), making it difficult to use it in practical design. In this study, the method of estimating the strength properties (an iso-angle division method) that can be applied universally within the maximum confining stress range for a good to fair continuum rock mass slope is proposed by applying the H-B failure criterion. In order to assess the validity and applicability of the proposed method of estimating the shear strength (A), the rock slope, which is a study object, was selected as the type of rock (igneous, metamorphic, sedimentary) on the steep slope near the existing working design site. It is compared and analyzed with the equivalent M-C shear strength (balancing the areas) proposed by Hoek. The equivalent M-C shear strength of the balancing the areas method and iso-angle division method was estimated using the RocLab program (geotechnical properties calculation software based on the H-B failure criterion (2002)) by using the basic data of the laboratory rock triaxial compression test at the existing working design site and the face mapping of discontinuities on the rock slope of study area. The calculated equivalent M-C shear strength of the balancing the areas method was interlinked to show very large or small cohesion and internal friction angles (generally, greater than $45^{\circ}$). The equivalent M-C shear strength of the iso-angle division is in-between the equivalent M-C shear properties of the balancing the areas, and the internal friction angles show a range of $30^{\circ}$ to $42^{\circ}$. We compared and analyzed the shear strength (A) of the iso-angle division method at the study area with the shear strength (B) of the existing working design site with similar or the same grade RMR each other. The application of the proposed iso-angle division method was indirectly evaluated through the results of the stability analysis (limit equilibrium analysis and finite element analysis) applied with these the strength properties. The difference between A and B of the shear strength is about 10%. LEM results (in wet condition) showed that Fs (A) = 14.08~58.22 (average 32.9) and Fs (B) = 18.39~60.04 (average 32.2), which were similar in accordance with the same rock types. As a result of FEM, displacement (A) = 0.13~0.65 mm (average 0.27 mm) and displacement (B) = 0.14~1.07 mm (average 0.37 mm). Using the GSI and Hoek-Brown failure criterion, the significant result could be identified in the application evaluation. Therefore, the strength properties of rock mass estimated by the iso-angle division method could be applied with practical shear strength.

A Study on the Constructing Discrete Fracture Network in Fractured-Porous Medium with Rectangular Grid (사각 격자를 이용한 단열-다공암반내 분리 단열망 구축기법에 대한 연구)

  • Han, Ji-Woong;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • For the accurate safety assessment of potential radioactive waste disposal site which is located in the crystalline rock it is important to simulate the mass transportation through engineered and natural barrier system precisely, characterized by porous and fractured media respectively. In this work the methods to construct discrete fracture network for the analysis of flow and mass transport through fractured-porous medium are described. The probability density function is adopted in generating fracture properties for the realistic representation of real fractured rock. In order to investigate the intersection between a porous and a fractured medium described by a 2 dimensional rectangular and a cuboid grid respectively, an additional imaginary fracture is adopted at the face of a porous medium intersected by a fracture. In order to construct large scale flow paths an effective method to find interconnected fractures and algorithms of swift detecting connectivities between fractures or porous medium and fractures are proposed. These methods are expected to contribute to the development of numerical program for the simulation of radioactive nuclide transport through fractured-porous medium from radioactive waste disposal site.

  • PDF

A Study on the Assessment of Safety Factor of Tunnels (터널의 안전율 평가 기법에 관한 연구)

  • 박종원;박연준;유광호;이상돈
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.327-338
    • /
    • 2004
  • The purpose of this research is to establish a concept of the factor of safety of tunnels which is a quantitative estimate of the stability of tunnels. Based on this concept, a numerical technique which calculates the factor of safety of tunnels was developed. To obtain the safety factor of a tunnel, the strength reduction technique in which a series of analyses are repeated with reduced ground strength until the tunnel collapses were employed. With this technique, the failure plane, as well as the factor of safety, can be obtained without prescribing the trial failure plane. Analyses were conducted with FLA $C^{2D}$(ver3.3), a geotechnical analysis program which is based on the finite difference method. From the result, the location of plastic zones, the maximum convergence and the maximum stress generated in the support system were also analyzed. The result shows that factors of safety are higher for the 1st and 2nd rock classes, and lower for the lower rock classes. Furthermore, factor of safety is higher when $K_{0}$ =0.5 compared to at in case of $K_{0}$ =2.0. Through this research, it is found that the factor of safety defined in this research can be used as a good quantitative index representing the stability of tunnels. Also, close examination of the results can help adjustment of the quantity and location of additional supports.s.

Evaluation of Effect of Rock Joints on Seismic Response of Tunnels (터널의 지진응답에 대한 암반 절리의 영향 평가)

  • Yoo, Jin-Kwon;Chang, Jaehoon;Park, Du-Hee;Sagong, Myung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.41-55
    • /
    • 2014
  • In performing seismic analysis of tunnels, it is a common practice to ignore the rock joints and to assume that the rock mass surrounding the tunnel is continuous. The applicability of this assumption has not yet been validated in detail. This study performs a series of pseudo-static discrete element analyses to evaluate the effect of rock joint on the seismic response of tunnels. The parameters considered are joint intersection location, joint spacing, joint stiffness, joint dip, and interface stiffness. The results show that the joint stiffness has the most critical influence on the tunnel response. The tunnel response increases with the spacing, resulting in localized concentration of moment and shear stress. The response of the tunnel is the lowest for joints dipping at $45^{\circ}$. This is because large shear stresses result in rotation of the principal planes by $45^{\circ}$. In summary, the weathered and smooth, vertical or horizontal, and widely spaced joint set will significantly increase the tunnel response under seismic loading. The tunnel linings are shown to be most susceptible to damage due to induced shear stress, and therefore should be checked in the seismic design.

True Triaxial Physical Model Experiment on Brittle Failure Grade and Failure Initiation Stress (취성파괴수준과 파괴개시시점에 관한 진삼축 모형실험연구)

  • Cheon, Dae-Sung;Park, Chan;Park, Chul-Whan;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.128-138
    • /
    • 2007
  • At low in-situ stress, the continuity and distribution of natural fractures in rock mass predominantly control the failure processes. However at high in-situ stress, the failure process are affected and eventually dominated by stress-induced fractures preferentially growing parallel to the excavation boundary. This fracturing is often observed in brittle type of failure such as slabbing or spatting. Recent studies on the stress- or excavation-induced damage of rock revealed its importance especially in a highly stressed regime. In order to evaluate the brittle failure around a deep underground opening, physical model experiments were carried out. For the experiments a new tue triaxial testing system was made. According to visual observation and acoustic emission detection, brittle failure grades were classified under three categories. The test results indicate that where higher horizontal stress, acting perpendicular $(S_{H2})$ and parallel $(S_{H1})$ to the axis of the tunnel respectively, were applied, the failure grade at a constant vertical stress level (Sy) was lowered. The failure initiation stress was also increased with the increasing $S_{H1}\;and\;S_{H2}$. From the multi-variable regression on failure initiation stress and true triaxial stress conditions, $f(S_v,\;S_{H1},\;S_{H2})$ was proposed.

Identification of Subsurface Discontinuities via Analyses of Borehole Synthetic Seismograms (시추공 합성탄성파 기록을 통한 지하 불연속 경계면의 파악)

  • Kim, Ji-Soo;Lee, Jae-Young;Seo, Yong-Seok;Ju, Hyeon-Tae
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.457-465
    • /
    • 2013
  • We integrated and correlated datasets from surface and subsurface geophysics, drilling cores, and engineering geology to identify geological interfaces and characterize the joints and fracture zones within the rock mass. The regional geometry of a geologically weak zone was investigated via a fence projection of electrical resistivity data and a borehole image-processing system. Subsurface discontinuities and intensive fracture zones within the rock mass are delineated by cross-hole seismic tomography and analyses of dip directions in rose diagrams. The dynamic elastic modulus is studied in terms of the P-wave velocity and Poisson's ratio. Subsurface discontinuities, which are conventionally identified using the N value and from core samples, can now be identified from anomalous reflection coefficients (i.e., acoustic impedance contrast) calculated using a pair of well logs, comprising seismic velocity from suspension-PS logging and density from logging. Intensive fracture zones identified in the synthetic seismogram are matched to core loss zones in the drilling core data and to a high concentration of joints in the borehole imaging system. The upper boundaries of fracture zones are correlated to strongly negative amplitude in the synthetic trace, which is constructed by convolution of the optimal Ricker wavelet with a reflection coefficient. The standard deviations of dynamic elastic moduli are higher for fracture zones than for acompact rock mass, due to the wide range of velocities resulting from the large numbers of joints and fractures within the zone.