• Title/Summary/Keyword: 암모니아 농도

Search Result 818, Processing Time 0.028 seconds

Variation of Nitrogen Removal Efficiency and Microbial Communities Depending on Operating Conditions of a CANON Process (CANON 공정에서 운전조건에 따른 질소 제거효율 및 미생물군집 변화)

  • Jo, Kyungmin;Park, Younghyun;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.332-339
    • /
    • 2015
  • Nitrogen removal is one of the most important issues about wastewater treatment because nitrogen is a primary pollutant caused various problems such as eutrophication. We developed a CANON microbial community by using AOB and ANAMMOX bacteria as seeding sources. When 100 mg-N/L of influent ammonium was supplied, the DO above 0.4 mg/L showed a very low TN removal efficiency while the DO of 0.3 mg/L showed TN removal efficiency as high as 71.3%. When the influent ammonium concentration was reduced to 50 mg/L, TN removal efficiency drastically deceased. However, TN removal efficiency was recovered to above 70% after 14 day operation when the influent nitrogen concentration was changed again from 50 mg-N/L to 100 mg-N/L. According to the operating temperature from $37{\pm}1^{\circ}C$ to $20{\pm}1^{\circ}C$, TN removal efficiency also rapidly decreased but gradually increased again up to $70.0{\pm}2.6$%. The analysis of PCR-DGGE showed no substantial difference in microbial community structures under different operational conditions. This suggests that if CANON sludge is once successfully developed from a mixture of AOB and ANAMMOX bacteria, the microbial community can be stably maintained regardless of the changes in operational conditions.

A Field Survey on the Odor Concentration in Piggery by the Change of the Season (돈사 내에서 계절별 악취 발생 농도 조사 연구)

  • Kam, D.H.;Jeong, J.W.;Choi, H.C.;Song, J.I.;Hong, J.T.;Lee, D.W.;Yoo, Y.H.
    • Journal of Animal Environmental Science
    • /
    • v.13 no.3
    • /
    • pp.187-194
    • /
    • 2007
  • Six pig farms were surveyed to measure the odor concentrations and characteristics of ammonia and sulfide corollary compounds in piggery. They were depended on the scale of piggery, weather conditions such as temperature, humidity, wind speed and direction, scales and types of pig breeding, and manure treatment methods. The highest ammonia concentrations in piggery were measured during the winter, since the tight sealed insulation in piggery made less amount of generated ammonia discharged from piggery. The objective of this study was to measure concentrations of odor in the piggery by season and growing, and to measure concentrations of odor at boundary area. So, we investigated the raising managements, manure managements, and methods of reducing odor according to farm scale. We found that concentration of ammonia gas in the swine fattening piggery in winter was the highest. This result is consistent with the lower ventilation rate to maintain Indoor temperature. In this result, there was no connection between farm scale and ventilating system. Concentration of ammonia gas was 1.64 ppm at one boundary area in the middle scale. $H_2S$, $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ were below the standard of protection odor policy.

  • PDF

Effects of Pre-Oxidation for Recirculation of Aquaculture Wastewater (양어용수 재이용을 위한 전 산화처리의 효과)

  • Lim, Jae-Lim;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.103-111
    • /
    • 2000
  • Ozonation and advanced oxidation($H_2O_2/O_3$) process were investigated under various experimental conditions to improve the efficiency of biological filter used for the treatment of recycled wastewater from aquaculture. Ammonia removal followed the first-order reaction whose reaction rate constant(k) was $2.0{\times}10^{-2}min^{-1}$ in ozonation. The ammonia removal rate increased according as the bicarbonate alkalinity is increased. About 46% $NH_3$ was oxidized by ozone at 200 mg/L as $CaCO_3$. When alkalinity existed in wastewater, ammonia removal rate by advanced oxidation was very low due to the inhibition effect of bicarbonate. However, when initial pH was adjusted to about 8.2 by 0.1 N KOH, ammonia removal rate was improved higher than that by ozonation. Especially. ammonia removal rate was the highest at $H_2O_2/O_3$ of 0.25 and about 90% of ammonia was removed in 30 min at this ratio as pH was maintained over 9. In the case of wastewater containing ammonia and organic constituents, ammonia removal efficiency by both ozonation and advanced oxidation decreased seriously because organic constituents consumed the oxidant faster than ammonia. In addition the optimal $H_2O_2/O_3$ ratio was changed. Like ammonia removal, DOC(dissolved organic carbon) increased for first 10 min and then decreased slowly because the particulate organic constituents were oxidized rapidly and then produce DOC. Even when the ammonia concentration by twice, oxidation of DOC was not retarded.

  • PDF

Reduction of ammonia conversion from urea by adding acetohydroxamic acid (Acetohydroxamic acid 이용한 Urea로부터 암모니아 발생 저감 연구)

  • Yun, Gwang Su;Oh, Ha Eun;Jung, Min Woong;Hwang, Okhwa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.5-13
    • /
    • 2021
  • Ammonia, primarily originating from urinary urea of the livestock manure, is known to play as a major precursor of fine particulate matter (PM2.5) generation which leads to a decrease in air quality and to harmful effects on public health. The objective of this study was to evaluate the effect of acetohydroxamic acid (AHA) addition on inhibition of ammonia conversion from urea. The experiment was performed at different urea concentration (500-4,000 mg Urea-N/L), AHA concentration (0-4,000 mg AHA/L), pHs (pH 6-10), and temperature (10-35℃). The result showed that the urease inhibition efficiency increased at higher concentration of AHA. However, the specific urease inhibition activity decreased at higher pH, showing 867.1±6.7 Unit/g AHA at pH 6 and 1,167.9±17.4 Unit/g AHA at pH 10, respectively. Decreased urease inhibition efficiency at both AHA and control was observed at higher temperature. This finding indicates that AHA can be used as the urease inhibitor for reducing ammonia emission in the management of livestock manure.

Estimation of Ammonia Emission During Composting Iivestock Manure Based on the Degree of Compost Maturity (축분 퇴비화 과정 중 퇴비 부숙도를 고려한 암모니아 발생량 산정)

  • 김기연;최홍림;고한종;김치년
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • Principal aim of this study is to suggest the statistical equation model which can predict an amount of ammonia emission according to the degree of compost maturity during composting livestock manure. Composting process was classified with intial, midterm and final phase based on germination index of compost samples. Total Kjeldahl nitrogen(TKN) and organic matter(OM) were selected as the independent variables available to contribute to ammonia emission from composting pile. Ammonia concentration measured in the samples taken at the intial phase was about 10ppm, sharply increased to 50ppm at the midterm phase, and gradually decreased to about 10ppm. The contents of Total Kjeldahl nitrogen and organic matter through whole composting period were ranged from 0.6 to 1.2% and from 30 to 40%, respectively, were reduced slightly at the midterm phase, but generally showed no constant fluctuation pattern. In estimating ammonia emission with application of the statistical equation model, the coefficients of independent variables at the midterm phase when an average concentration of ammonia was highest showed a relatively high values whereas those at the initial phase when an that of ammonia was lowest indicated a relatively low values. However, no statistical significance was found in the coefficients of independent variables and the equation model. Additionally, the further research, which can include the considerable analysis data with more samples taken than this study, is needed in order to suggest the statistically significant equation model available to predict ammonia emission during composting process.

고정화 질화세균을 이용한 저농도 암모니아의 고도처리 (II) 초기 암모니아 농도, 온도 그리고 pH의 영향

  • Lee, Jeong-Hun;Kim, Byeong-Jin;Lee, Min-Su;Na, In-Geol;Seo, Geun-Hak
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.346-348
    • /
    • 2002
  • This study estimated the effect of influent TAN concentration. temperature and pH in the airlift bioreactor(aeration rate; 1.5 vvm, HRT 0.35hr) using immobilized nitrifiers by PVA. At the effect of influent TAN concentration, removal rate was increased with increasing it and removal efficiency maintained 93${\pm}$2%. The optimum temperature for nitrification was $30^{\circ}C$ and at this point. removal efficiency was 95.5${\pm}$1.5%. It was effective to nitrify at $10^{\circ}C$ of low temperature. In the pH range from 7 to 9 in the bioreactor. removal rate and removal efficiency was 310${\pm}$10 $g/m^3$ day and 94${\pm}$3%.

  • PDF

A Study on Heat Transfer Characteristics for Removal of Absorption Heat in Absorption Process of Ammonia-Water Bubble Mole (암모니아-물 기포분사형 흡수과정에서의 흡수열 제거를 위한 열전달 특성 연구)

  • Lee, Jae-Cheol;Lee, Ki-Bong;Chun, Byung-Hee;Lee, Chan-Ho;Ha, Jong-Joo;Kim, Sung-Hyun
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.273-280
    • /
    • 2001
  • An absorber is a major component in the absorption refrigeration systems and its performance greatly affects the overall system performance. In this study, experimental analyses on heat transfer characteristics for removal of absorption heat in ammonia-water bubble mode absorber were performed. Heat transfer coefficients were estimated as the variations of input gas flow rate, solution flow rate, temperature, concentration, absorber diameter and height, and input flow direction. The increase of gas and solution flow rate affects positively in heat transfer. However, the increase of solution temperature and concentration affects negatively. Moreover, under the same Reynolds Numbers, countercurrent flow is superior to cocurrent flow in heat transfer performance. In addition, from these experimental data, empirical correlations which can explain easily the characteristics of heat transfer are derived.

  • PDF

Acute Toxicity of Nitrite, Ammonia and Hydrogen Sulfide for Early Developmental Stages of Fenneropenaeus chinensis (대하의 초기생활사에 있어 아질산, 암모니아 및 황화수소의 급성독성)

  • Ji, Jeong-Hun;Gang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.17 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • Effects of nitrite, ammonia and hydrogen sulfide on survival of the early developmental stages of Fenneropenaeus chinensis were determined under continuous flow-through system. The 96hr-$LC_{50}$ values of mysis stage were 18.4 mg/L, 0.69 mg/L and 13.5 $\mu{g}/L$ for nitrite, ammonia and hydrogen sulfide, respectively; 28.3 mg/L, 1.23 mg/L and 20.7 $\mu{g}/L$ for post larva stage and 39.8 mg/L, 1.73 mg/L and 28.5 $\mu{g}/L$ for juvenile stage, respectively. The Fenneropenaeus chinensis sensitivity for the three pollutants was in the order of hydrogen sulfide>ammonia>nitrite. The mysis/post larva, mysis/juvenile and post larva/juvenile ratios of nitrite, ammonia and hydrogen sulfide toxicity were >1.5, >2.0 and <1.5 times, respectively, and mysis were found to be more sensitive to pollutants than juvenile in all cases.

Performance of an Intermittent Aerated Pilot-scale Reactor Vessel for Commercial Composting (상업용 퇴비화를 위한 간헐통기식 파이로트 규모 반응조의 성능)

  • Hong, Ji-Hyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.2
    • /
    • pp.31-44
    • /
    • 1998
  • Mixtures of hog manure slurry and sawdust were composted by an intermittent aeration method to verify the performance evaluation of pilot-scale reactor vessels during composting high rate (decomposition) process. Instrumentation was designed to measure temperatures in compost, oxygen and carbon dioxide concentration, air flow rates, and ammonia gas emitted. It was found that ammonia concentration during composting high rate decreased more quickly to the allowable range of 34-40 ppm after 14days at near the optimal levels (II) than in the case of lower levels (I). The influence of the optimal levels (II) such as moisture content (55-65%), C/N ratio (20-40), pH (7-8) and temperature in compost (<$60^{\circ}C$) on the reduction of ammonia gas was considerable for commercial composting.

  • PDF

Effect of Factors of Nitrification Process in Wastewater Treatment (폐수처리에 있어 질산화 공정 인자의 영향)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Lim, Eun-Tae;Bang, Sung-Hun;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.296-302
    • /
    • 2009
  • This paper was investigated the research regarding the effects of several factors such as initial ammonium nitrogen concentration, aeration rate. biomass amount and C/N ratio on nitrification process using synthetic wastewater and activated sludge obtained from wastewater treatment facility. As a result, in high ammonium nitrogen concentration above 100 mg/L, the pH of wastewater was dropped to pH 6.8. The increases of initial ammonium nitrogen concentration, aeration rate and initial biomass amount were linearly enhanced the removal rate of ammonium nitrogen. In the condition of C/N ratio of 0 to 3, high ammonium nitrogen removal rate was obtained.