• Title/Summary/Keyword: 암모니아성 질소

Search Result 521, Processing Time 0.035 seconds

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

The Limnological Survey of a Coastal Lagoon in Korea (4); Lake Songji (동해안 석호의 육수학적 조사 (4); 송지호)

  • Kwon, Sang-Yong;Heo, Woo-Myung;Lee, Sang-Ha;Kim, Dong-Jin;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.461-474
    • /
    • 2005
  • Physicochemical parameters, plankton community structure, and sediment were surveyed from 1988 to 2002, at two months interval, in a eutrophic coastal lagoon (Lake Songji, Korea). The lake basin is separated from the sea by a narrow sand dune, and a shallow sill divides the lake basin into two sub-basins. The stable stratifications and chemoclines are maintained all through the year at 1-2 m depth. DO was often very low (<1 $mgO_2\;{\cdot}\;L^{-1}$) in the monimolimnion. Secchi disc transparency was in the range of 0.5-2.7 m. TP, TN, and Chl. a concentration in the mixolimnion were 0.015-0.396 $mgP\;{\cdot}\;L^{-1}$), 0.223-3.521 $mgN\;{\cdot}\;L^{-1}$, and 0.5-129.8 mg ${\cdot}\;m^{-3}$, respectively. TSI was in the eutrophic range of 54 to 62. Sediment was composed of silt and coarse silt. COD, TP, and TN content of the sediment were 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$, 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ and, 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$, respectively. The 49 phytoplankton species were identified. The maximum phytoplankton abundance obscured the lake in September 2001 (max. density: 23,350 cells ${\cdot}\;mL^{-1}$. The Chlorophyte Schroederia judayi was dominant species in summer (max. density: 20,417 cells ${\cdot}\;mL^{-1}$). The lake showed unique limnological features of a brackish lagoon in respect to biological community, chemical characteristics, and physical phenomena.

Change of quality properties of Doenjang according to soaking method in brine (장 담금법에 따른 된장의 품질 특성 변화)

  • Choi, Bo-Young;Gil, Na-Young;Park, Shin-Young;Cho, Yong-Sik;Kim, So-Young
    • Food Science and Preservation
    • /
    • v.24 no.7
    • /
    • pp.923-933
    • /
    • 2017
  • This study was carried out to examine the quality characteristics of Doenjang manufactured with or without soaking Meju in brine according to salt concentrations (8 and 12%) during fermentation for 6 months. The moisture content and salinity of Doenjang fermented for 6 months were 54.9-60.3% and 7.8-12.5%, respectively. Doenjang using soaking Meju in brine had higher pH and lower titratable acidity than that using non-soaking Meju. The reducing sugar content in all samples was increased until 2 months and then decreased regardless of soaking Meju, especially that of non-soaking 8% Doenjang was the highest. The 8% low-salt Doenjang was shown the highest amino-type nitrogen content, especially the soaking Doenjang was higher than the non-soaking Doenjang. ${\alpha}$-amylase activity of all samples during fermentation were continuously decreased from 0.91-0.94 Unit/g to 0.01-0.06 Unit/g, especially the 8% soaking Doenjang was shown the highest activity after 2 months. Total bacterial count of the soaking Doenjang at the 6 months was in range of 7.8-8.0 log CFU/g and that of the non-soaking Doenjang was in range of 7.2-7.5 log CFU/g. By taste analysis, the 8% soaking Doenjang was shown the similar taste pattern with commercial Doenjang. In conclusion, the 8% low-salt Doenjang manufactured with soaking Meju in brine was a suitable concentration in order to reduce salt intake.

Studies on a Feasibility of Swine Farm Wastewater Treatment using Microbial Fuel Cell (미생물연료전지의 가축분뇨 처리 가능성 연구)

  • Jang, Jae-Kyung;Kim, Se-Hee;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Jong-Gu;Kang, Young-Goo;Kim, Young-Hwa;Choi, Jung-Eun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.461-466
    • /
    • 2010
  • In this study the feasibility of simultaneous electricity generation and treatment of swine farm wastewater using microbial fuel cells (MFCs) was examined. Two single-chamber MFCs containing an anode filled with different ratio of graphite felt and stainless-steel cross strip was used in all tests. The proportion of stainless-steel cross strip to graphite felt in the anode of control microbial fuel cell (CMFC) was higher than that of swine microbial fuel cell (SMFC) to reduce construction costs. SMFCs produced a stable current of 18 mA by swine wastewater with chemical oxygen demand (COD) of $3.167{\pm}80\;mg/L$ after enriched. The maximum power density and current density of SMFCs were $680\;mW/m^3$ and $3,770\;mA/m^3$, respectively. In the CMFC, power density and current density was lower than that of SMFC. CODs decreased by the SMFC and CMFC from $3.167{\pm}80$ to $865{\pm}21$ and $930{\pm}14\;mg/L$, achieving 72.7% and 70.6% COD removal, respectively. The suspended solid (SS) of both fuel cells was also reduced over 99% ($4,533{\pm}67$ to $24.0{\pm}6.0\;mg/L$). The concentration of nutritive salts, ${NH_4}^+$, ${NO_3}^-$, and ${PO_4}^{3-}$, dropped by 65.4%, 57.5%, and 73.7% by the SMFC, respectively. These results were similar with those of CMFC. These results show that the microbial fuel cells using electrode with mix stainless-steel cross strip and graphite felt can treat the swine wastewater simultaneously with an electricity generation from swine wastewater.

The Effect of Korean Soysauce and Soypaste Making on Soybean Protein Quality Part II. Chemical Changes During Meju-brine Ripening (재래식 간장 및 된장 제조가 대두 단백질의 영양가에 미치는 영향 제2보 메주장의 숙성중에 일어나는 성분 변화)

  • Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.19-32
    • /
    • 1976
  • The laboratory Mejus as well as home-made Meju and improved Meju received from Korea were ripened in the brine for up to 8 months and the changes is the chemical composition during the process were determined and the differences between the types of Meju were compared. On the basis of the amino acid pattern, the changes in the protein quality of soybean during the process was evaluated. No significant changes in the general chemical composition of Meju were noticed during the ripening for 8 months. However, the nitrogen solubility of Meju increased for $13{\sim}29%$ to $66{\sim}78%$ during 8 month ripening of the Meju-brine mixture. The concentration of free amino-N to the total-N increased from $4{\sim}7%$ in Meju to $29{\sim}35%$ in the 8month ripened mixture. The concentration of amino-N to the total-N increased from $1{\sim}4%$ in Meju to $5{\sim}14%$ in the 8month ripened mixture and the changes varied with the type of Meju used. Remarkable changes in the amino acid pattern of soybean were occured during the ripening process. The concentration of methionine decreased to the half of original Meju during the first month of ripening. Arginine and histidine were destroyed rapidly by the ripening longer than 1 month. A considerable amount of ornithine was synthesized during the ripening. The amino acid pattern of Meju did change drastically during the ripening longer than 3 months and the changes varied with the type of Meju. The retention of the nutrients in soybean during 8 month ripening of the laboratory 3 month Meju in the brine was 49% for carbohydrates, 107% for crude fat, 93% for crude protein and 74% for the total amino acid. Histidine, arginine and methionine and 74% for the total amino acid. Histidine, arginine and methionine were the most damaged during the process, retaining only 25%, 27% and 49% of the contents in raw soybean, respectively, whereas lysine retained 79%. By the separation of the 8 month ripened mixture, approximately 60% of crude protein, all of crude fat and 80% of carbohydrates in the mixture were retained in soypaste. Soypaste contained higher concentrations of amino acids per 16gN compared to soysauce, except for lysine. The most limiting amino acid of the protein was the S-containing amino acids in all cases studied, whereas the second limiting amino acid varied from valine in soybean to threonine in most of Mejus and the brine mixtures, lysine in most of soypastes and tryptophan in some of soysauces. According to the protein quality evaluation made by the reference of the FAO provisional pattern of amino acid, the chemical score of raw soybean was 82, which was reduced to 77 by cooking and further reduced to $71{\sim}74$ by Meju fermentation. At the eighth month of ripening the chemical score of the Meju-brine mixtures were reduced to $51{\sim}66. After the separation, the chemical score of soypaste ranged from 60 to 71, whereas that of soysauce varied from 45 to 57. Generally, the products made from improved Meju recorded the highest score, whereas those made from homemade Meju showed the poorest protein quality. The essential amino acid index(EAAI) of the samples was similar to the chemical score, but it appeared to fit the overall changes in the amino acid pattern during the process better than the chemical score.

  • PDF

The Treatment of Night Soil using Bacillus sp. (Bacillus sp.를 이용한 분뇨처리)

  • 염혜경;이은숙;이병헌;이민규;정일호;김중균
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.700-707
    • /
    • 2002
  • To study the characteristics of organic and nutrient removal by Bacillus species at high COD concentration of influent, three lab-scale batch reactors(R1, R2, R3), each of which has different substrate composition, were operated. More than 95% of $NH_4^+$-N and $COD_{cr}$, concentrations were removed under an aerobic condition, and their removal efficiencies were found to be 22.6 and 90.5%(R1), 23.9 and 65.8%(R2), 30.2 and 86.4%(R3), respectively. The removal efficiency of $NH_4^+$-N was high when an enough amount of $NO_3^{-}$-N was supplied, and that of $COD_{cr}$. was low when a high concentration of initial $NO_2^{-}$-N was added. The amount of carbon utilized in denitrification was a little. In all reactors,$NO_3^{-}$-N was removed under an anoxic condition, but in the R3 reactor, 10% of $NO_3^{-}$-N could be removed even undo, an aerobic condition. The removal efficiencies of TN and TP were 41.8 and 49.5%(R1), 40.1 and 35.8%(R2), 47.0 and 57.6%(R3), respectively. Alkalinities destructed under an aerobic condition for each reactor were 4.96, 5.41 and 3.93 mg/L (as $CaCO_3$) per each gram of $NH_4^+$-N oxidized, respectively, while 3.06, 3.17 and 2.60 mg/L (as $CaCO_3$) of alkalinities were produced for each gram of ,$NO_3^{-}$-N reduced to $N_2$. The SOUR were found to be 38.5, 52.7 and 42.0 mg $O_2$/g MLSS/hr, which indicated that Bacillus sp. had a higher cell activity than activated sludge. The OLR and sludge production were estimated to be 0.69 and 0.28(Rl), 0.77 and 0.20(R2), 0.61 kg COD/$m^3$/day and 0.25 kg MLSS/kg COD(R3), respectively. From the N-balance, the highest percentage(40.9%) of nitrogen lost to $N_2$ was obtained in the R3 reactor. From all the results, the possibility of aerobic denitrification Bacillus sp. has been shown and the B3 process seemed to have two advantages: a little amount of carbon was required in denitrification and not much amount of alkalinity was destructed under an aerobic condition.

Distributions of Endangered Fish Species and Their Relations to Chemical Water Quality-Ecological Stream Health in Geum-River Watershed (금강 대권역 대표 멸종위기 담수어류의 분포 특성 및 이화학적 수질-하천 생태건강도와의 관계분석)

  • Lee, Sang-Jae;An, Kwang Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.6
    • /
    • pp.986-995
    • /
    • 2016
  • The objective of this study was to analyze the distribution of endangered fish species and elucidate their relations on chemical water quality, physical habitat conditions and ecological stream health. The dominant species in the watershed was Pseudopungtungia nigra (Pn), Gobiobotia macrocephala (Gm), Gobiobotia brevibarba (Gb), Liobagrus obesus (Lo), and Iksookimia choii (Ic) in the order. The species of Pn designated as "critical endangered species (I) (CER)", was most widely distributed species among the endangered species, so the designation of the species should be re-evaluated. The endangered species was most popular (4 species, 384 individuals) in the Cho-River region of eighteen lotic regions. According to the analysis of chemical tolerance limits in the habitats with endangered fish species, biological oxygen demand (BOD) and total phosphorus (TP) was analyzed as "very good" (Ia) and "good condition" in the chemical criteria of the Ministry of Environment, Korea. Also, chemical conditions, based on ammonia-N ($NH_{4+}$), total nitrogen (TN), phosphate-P ($PO_{4^-}P$) were much better in the habitat with endangered species (Hw) than the habitat without endangered species (Ho). In the meantime, the species of Ic showed wide ranges on the chemical tolerance, so physical habitat conditions, such as the size of substrate particles (sand) and hydrological regime, were considered as more important factors than the chemical water quality, if the water quality is not largely degraded. The endangered species were also more distributed in the high-order (4-6) streams than the low-order (1-3) streams. The evaluation of ecological stream health, based on multi-metric model of the Index of Biological Integrity (IBI), showed the large difference between the Hw (21.6, fair condition)and Ho (30.5, good condition), indicating that the habitat maintained well chemically and physically had higher distributions of endangered species. Overall, the designation of CER on the Pn should be re-evaluated due to wide-distributions, and the protections from water pollution and the habitat conservations on the endangered species are necessary in the watershed.

Temporal and Spatial Variations of Primary Productivity in Estuary of Youngsan River and Mokpo Coastal Areas (영산강 하구역 및 목포 연안 해역 식물플랑크톤 1차생산력의 시.공간적 변화)

  • Lee, Yeon-Jung;Min, Jun-Oh;Shin, Yong-Sik;Kim, Sung-Hwan;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.327-336
    • /
    • 2011
  • Temporal and spatial variations of primary productivity were investigated in the estuary of Youngsan River and Mokpo coastal areas in 2009. After heavy rain, concentrations of ammonium, phosphate, and silicate increased at six stations in August. The torrential rainfall may cause an increase in nutrient concentrations during summer. There is no limitation of nutrients (except for February at the mid-Youngsan estuarine region YS2) but a potential phosphate limitation was apparent at all stations. Silicate depletion was observed at YS2 in February due to a massive diatom bloom. The trophic status of the Youngsan estuary and Mokpo coastal areas were inferred from an assessment of the primary productivity. In February and May, YS1 (upper Youngsan estuary site) and YS2, YS3 (near the Youngsan river estuary barrage), MP1 (upper Mokpo coastal region site) were appropriately assigned to the mesotrophic category. MP2 (mid-Mokpo coastal region site) and MP3 (outer site of Mokpo coastal region) were assigned to the oligotrophic category. All stations were classified to the oligotrophic status in November. In August, after heavy rain, Youngsan estuary stations maintained mesotrophic status. On the other hand, MP1 and MP2 were classified in the eutrophic category and MP3 to mesotrophic status. In particular, primary productivities of MP1 and MP2 were 9 and 7 times higher respectively than the standard of eutrophic status ($1,000-mgC\;m^{-2}d^{-1}$). These results suggest that a massive freshwater discharge from the Youngsan River estuary should be considered a main factor in the occurrence of phytoplankton bloom in Mokpo coastal areas during summer. Seasonal variations of primary productivity are closely related with depth-integrated Chl. a.

Effect of Filter-feeding Bivalve (Corbiculidae) on Phyto- and Zooplankton Community (여과 섭식성 패류가 동 ${\cdot}$ 식물플랑크톤 군집에 미치는 영향)

  • Kim, Ho-Sub;Kong, Dong-Soo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.319-331
    • /
    • 2004
  • This study was conducted to evaluate the ecological impact of freshwater bivalve (Corbiculidae) on plankton communities in experimental enclosure systems (2 m ${\times}$ 2 m ${\times}$ 2 m). During the acclamation period of one month, cyanobacteria, including Microcystis viridis and Microcystis aeruginosa, dominated in both control and treatment enclosures with no noticeable density difference. After the addition of 100 mussels, dominant species of phytoplankton shifted from Microcystis to Scenedesmus in concert with slight decrease in the cell density and the increase of N/P ratio. However, cell density in the control quickly increased, accompanied with changes of dominant species to Oscillatoria spp. With the introduction of additional 500 musseles in the treatment enclosure, dominant phytoplankton species in both enclosures were replaced with Selenastrum spp. and Cryptomonas sp. In the initial stage, the total zooplankton abundance in the control was higher than that of treatment, but it was reversed after the addition 100 mussels. After mussel density increased up to 600 indivisuals, zooplankton density in the treatment decreased with dominance of small taxa, such as rotifers and nauplius. However, abundance and carbon biomass of large zooplankton, such as Bosmina longirostris and Diacyclops thomasi were maintained in a high level compared with those of control. During the study period, Chl. a concentration in mussel treatment and control increased with DIP and $NH_3-N$, respectively. Due to the increase of $NH_3-N$, especially after the introduction of additional 500 mussels, nitrogen limitation did not occur in the treatment enclosure in contrast with strong nutrient limitation occurred in the control. These results indicate that filter-feeding Corbicula could exert important impact on nutrient recycling and plankton community structure in a freshwater ecosystem, through direct feeding and competition for the same food resource as zooplankton on one hand, and through alteration of nutrient availability on the other.