• Title/Summary/Keyword: 알코올 측정 센서

Search Result 21, Processing Time 0.022 seconds

Determination of Ethanol in Alcoholic Beverages by Alcohol Oxidase Sensor (Alcohol oxidase 효소센서를 이용한 알코올 음료 중의 에탄올 정량)

  • Lee, Ok-Kyung;Kim, Tai-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.266-269
    • /
    • 1995
  • In order to measure alcohol contents with speed and accuracy, alcohol sensor was prepared. Alcohol sensor was made by connecting with oxygen electrode after immobilized alcohol oxidase on nylon net with glutaraldehyde. Alcohol was determined by changing the rate of dissolved oxygen consumption using D.O. analyzer. Alcohol contents in alcoholic beverages were determined under the optimum conditions. The results were 0.71% in low-alcohol beverage, $4{\sim}5%$ in beers, 10.06% in wine, 16.12% in chungju, 25.71% in soju, and 6.18% in takju, respectively. The values by alcohol sensor showed an excellent correlation(r=0.999) with GC method.

  • PDF

Capacitance-type Alcohol Sensors using Porous Silicon Layer (다공질 실리콘 층을 이용한 정전용량형 알코올 센서)

  • Kim, Seong-Jeen
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.31-36
    • /
    • 1999
  • A capacitance-type sensor using porous silicon layer is developed to measure aqueous alcohol concentration. Since alcohol, so called ethanol, is very permeable into the silicon wafer, it is often used to help chemical reaction when the silicon wafer is processed under some aqueous solution. In this work, the sensing property was measured for the alcohol concentration from zero to near 100 percent with two types of samples with porous silicon layer formed in 25 and 35% HF solution, respectively. Good reliability as well as fast response time and good linearity were shown over 10kHz and the measured capacitance was observed to be inverse to alcohol concentration due to the decrease of the whole dielectric constant in porous silicon layer.

  • PDF

Study on Porous Silicon Sensors to Measure Low Alcohol Concentration (저농도 알코올 측정을 위한 다공질 실리콘 센서에 관한 연구)

  • Kim Seong-Jeen
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.130-133
    • /
    • 1999
  • In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to apply for breath alcohol measurement and its characteristics are estimated at room temperature. Current alcohol sensors using metal oxides such as tin-oxide are not only difficult to measure low alcohol concentration, but also should heat at $200\;to\;400^{\circ}C$ to improve the sensitivity. But the sensor using porous silicon layer has good sensitivity even at room temperature by very large effective surface area and suitable structure to fabricate integrated micro sensors. In the experiment, the capacitance was measured for the range of 0 to $0.5\%$ alcohol concentration with the interval of $0.05\%$, in which alcohol solution was kept at 25, 36, and $45^{\circ}C$ by a heater. As the result, good linearity was observed and the capacitance increased about 1.1, 2.6 and $4.6\%$ per the increment of $0.1\%$ alcohol concentration each temperature, respectively, at the frequency of 120 Hz.

Implementation of Alcohol Concentration Data Measurement and Management System (알코올 측정 데이터 수집 및 관리시스템 구현)

  • Ki-Young Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.540-546
    • /
    • 2023
  • The scope of IoT use has expanded due to the development of related technologies, and various sensors have been developed and distributed to meet the demand for implementing various services. Measuring alcohol concentration using a sensor can be used to prevent drunk driving, and to make this possible, accurate alcohol concentration must be measured and safe transmission from the smartphone to the server must be guaranteed. Additionally, a process of converting the measured alcohol concentration value into a standard value for determining the level of drinking is necessary. In this paper, we propose and implement a system. Security with remote servers applies SSL at the network layer to ensure data integrity and confidentiality, and the server encrypts the received information and stores it in the database to provide additional security. As a result of analyzing the accuracy of alcohol concentration measurement and communication efficiency, it was confirmed that the measurement and transmission were within the error tolerance.

Design of multifunctional disinfection system (다기능 방역 시스템의 설계)

  • Choi, Duk-Kyu;Song, Kwang-ho;Kim, Ha-hyeong;Yoon, min-Gyu;Lee, Seung-jun;Jeong, Jae-seop;Jeong, Sang-chan;Lee, Jea-ik;Kim, So-yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.495-496
    • /
    • 2021
  • 코로나 19로 인하여 다중이용시설에 출입 시 정부 지침에 따라 QR코드 스캔, 출입 명부 작성, 체온 측정 등 방역절차를 지켜야한다. 본 연구에서는 방역 절차를 간편화하고 동합한 방역 시스템을 제안한다. QR코드 스캐너를 통하여 출입자의 신상 정보를 확인하며 체온 측정 모듈을 통하여 출입자의 체온을 측정한다. 추가적으로 워터펌프를 통하여 소독제를 분사하며 서보모터를 통하여 출입문을 열고 닫는다. 또한, 산업 현장에서는 알코올 측정 센서를 통하여 작업자의 알코올 수치를 측정하여 음주로 인한 산업사고도 예방한다.

  • PDF

Driving under the influence Prevention System Using Fingerprint sensors with Arduino (아두이노를 기반으로 지문센서를 활용한 음주운전방지장치)

  • Son, Jung-Hun;Lee, Ho-Yeong;Bae, Hyun-Ji;Kim, Yun-Ho;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.969-976
    • /
    • 2022
  • In this paper, a drunk driving prevention system was implemented to measure drunk driving before starting to prevent drunk driving accidents caused by complacency after drinking. In order to prevent a situation in which a driver but not a driver authenticates instead of a driver, the identification means was strengthened and the alcohol sensor was implemented to operate when the wind sensor measured above the set value set. Through this system, the driver's alcohol measurement process was strengthened. Sensors were determined through various experiments, and finally, when the alcohol concentration was 0.03% or more, the DC motor was stopped and the vehicle was designed to be unable to operate, thereby implementing a system in which drunk driving was prevented in advance.

Development of an Electric Scooter App Utilizing Alcohol Detection Sensors (음주측정 센서를 활용한 전동킥보드 앱 개발)

  • Eun-Gyeom Jang;Seung-Nyun Kim;Huck Kim;Jeong-Yo Ahn;Min-su Mun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.233-234
    • /
    • 2024
  • 본 논문은 킥보드 음주운전을 방지하기 위해 알코올 센서를 활용하여 킥보드 대여 전 사전에 음주운전을 방지하는 기능을 가지고 있는 애플리케이션이다. 기존 킥보드 대여 애플리케이션과는 다르게 제안한 애플리케이션은 킥보드 대여 전 API를 이용한 운전면허 검증 및 아두이노 알코올 센서를 이용한 알코올 수치를 측정하여 사용을 제한하고 사고를 미리 방지한다. 또한 사용자는 애플리케이션을 통해 지도에 표시된 킥보드의 마커를 클릭하여 대여 및 반납 시 카드 자동결제를 통해 간편하게 사용할 수 있도록 구현하였다.

  • PDF

Development of Biosensor for Simultaneous Determination of Glucose, Lactic Acid and Ethanol (포도당, 젖산 및 에탄올의 동시 측정용 바이오센서의 개발)

  • Kim, Jung-Ho;Rhie, Dong-Hee;Kim, Tae-Jin;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.22-34
    • /
    • 1998
  • The purpose of this study is to develop biosensor for determination of glucose, lactate, and ethanol in foods and food-stuffs simultaneously. The multiple cathode system was prepared with an oxygen electrode having one anode and hexagonal cathode. Glucose oxidase, mutarotase, lactate oxidase, alcohol oxidase and catalase were used for immobilization to determine glucose, lactate, and ethanol. These components including ethanol were simultaneously determined by the immobilized enzymes in the multiple cathode system. The determination of the components by enzyme sensor was based on the maximum slope of oxygen consumption from enzyme reaction of each sensor part. The response time for analysis was 1 min. The optimum condition for glucose, lactate and ethanol sensor was found to be 0.1 M potassium phosphate buffer, pH 7.0 at $40^{\circ}C$. Interferences of various sugars and organic acids were investigated. Less than 10% of error was found in determination of the components except organic acids. This difference was compensated by the modified equation. This system was confirmed by conventional methods. It was concluded that the multiple cathode system of this study is for an effective method to determine sugar, organic acid, ethanol simultaneously in foods.

  • PDF

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol (폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서)

  • Yeo, Junho;Kwon, Younghwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.627-632
    • /
    • 2020
  • In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.