DOI QR코드

DOI QR Code

Humidity Sensor Using Microwave Sensor Based on Microstrip Defected Ground Structure Coated with Polyvinyl Alcohol

폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서

  • Yeo, Junho (School of ICT Convergence, Daegu University) ;
  • Kwon, Younghwan (Department of Chemical Engineering, Daegu University)
  • Received : 2020.11.19
  • Accepted : 2020.12.15
  • Published : 2020.12.30

Abstract

In this paper, we have studied a development of a humidity sensor using a microwave sensor based on a microstrip defected ground structure coated with polyvinyl alcohol. A high-sensitivity microwave sensor, which is sensitive to the changes in the permittivity of the material under test, is designed by adding an interdigital capacitor-shaped defected ground structure to the ground plane of a microstrip line. Polyvinyl alcohol, a polymer material whose permittivity varies depending on humidity, is coated with a thin thickness on the defected ground structure of the proposed microwave sensor, and the changes in the resonance frequency and magnitude of the transmission coefficient for the microwave sensor according to humidity are measured. When relative humidity increases from 40% to 80% in 10% increments at a temperature of 25 degrees using a temperature/humidity chamber, the resonant frequency of the transmission coefficient decreases from 1.475 GHz to 1.449 GHz, and the magnitude is increased from -32.90 dB to -25.67 dB.

본 논문에서는 폴리비닐알코올로 코팅된 마이크로스트립 결함 접지 구조 기반 마이크로파 센서를 이용한 습도 센서의 개발에 대하여 연구하였다. 인터디지털 커패시터 모양의 결함 접지 구조를 마이크로스트립 선로의 접지면에 추가하여 피시험물의 유전율 변화에 민감한 고감도 마이크로파 센서를 설계하였다. 습도에 따라 유전율이 변하는 고분자 물질인 폴리비닐알코올을 제안된 센서의 결함 접지 구조에 얇은 두께로 코팅하였고, 습도에 따른 마이크로파 센서의 전달계수의 공진 주파수와 크기의 변화를 측정하였다. 온습도 챔버를 사용하여 25도에서 상대습도를 40%에서 80%까지 10% 간격으로 증가시켰을 때 전달계수의 공진 주파수는 1.475 GHz에서 1.449 GHz로 감소하였고, 크기는 -32.90 dB에서 -25.67 dB로 증가하였다.

Keywords

References

  1. Sensors play key role in pushing industry into fourth age [Internet]. Available: http://crown.co.za/images/magazines/electricity-control/SpotOn/Sensors_play_key_role_in_pushing_industry_into_Fourth_Age.pdf.
  2. N. Yamazoe and Y. Shimizu, " Humidity sensors: principles and applications," Sensors and Actuators, Vol. 10, No. 3-4, pp. 379-398, Nov. 1986. https://doi.org/10.1016/0250-6874(86)80055-5
  3. B. M. Kulwicki, "Humidity sensors," Journal of the American Ceramic Society, Vol. 74, No. 4, pp. 697-708, Apr. 1991. https://doi.org/10.1111/j.1151-2916.1991.tb06911.x
  4. E. Traversa, "Ceramic sensors for humidity detection: the state-of-the-art and future developments," Sensors and Actuators B: Chemical, Vol. 23, No. 2-3, pp. 135-156, Feb. 1995. https://doi.org/10.1016/0925-4005(94)01268-M
  5. C. Y. Lee and G. B. Lee, "Humidity sensors: a review," Sensor Letters, Vol. 3, pp. 1-15, 2005. https://doi.org/10.1166/sl.2005.001
  6. S. Ali, A. Hassan, G. Hassan, L. Bae, and C. Lee, "All-printed humidity sensor based on graphene/methyl-red composite with high sensitivity," Carbon, Vol. 105, pp. 23-32, Aug. 2016. https://doi.org/10.1016/j.carbon.2016.04.013
  7. S. W. Hong, Y. M. Kim, and Y. C. Yoon, "Development of capacitive type humidity sensor using polyimide as sensing layer," Journal of Korea Institute of Information, Electronics, and Communication Technology, Vol. 12, No. 4, pp. 366-372, Aug. 2019. https://doi.org/10.17661/JKIIECT.2019.12.4.366
  8. H. Farahani, R. Wagiran, and M. N. Hamidon, "Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review," Sensors, Vol. 14, pp. 7881-7939, 2014. https://doi.org/10.3390/s140507881
  9. K. Saeed, M. F. Shafique, M. B. Byrne, and I. C. Hunter, Planar microwave sensors for complex permittivity characterization of materials and their applications, in Applied Measurement Systems, London, United Kingdom: IntechOpen, ch. 15, pp. 319-350, 2012.
  10. Z. Chen and C. Lu, "Humidity sensors: a review of materials and mechanisms," Sensor Letters, Vol. 3, No. 4, pp. 274-295, 2005. https://doi.org/10.1166/sl.2005.045
  11. P. J. Schubert and J. H. Nevin, "A polyimide-based capacitive humidity sensor," IEEE Transactions on Electronic Devices, Vol. 32, No. 7, pp. 1220-1223, Jul. 1985. https://doi.org/10.1109/T-ED.1985.22104
  12. J. Boudaden, M. Steinmabl, H. E. Endres, A. Drost, I. Eisele, C. Kutter, and P. Muller-Buschbaum, "Polyimide-based capacitive humidity sensor," Sensors, Vol. 18, pp. 1516, 2018. https://doi.org/10.3390/s18051516
  13. E. M. Amin, N. C. Karmakar, and B. W. Jensen, "Polyvinyl-alcohol (PVA)-based RF humidity sensor in microwave frequency," Progress in Electromagnetic Research B, Vol. 54, pp. 149-166, 2013. https://doi.org/10.2528/PIERB13061716
  14. E. M. Amin, N. C. Karmakar, and B. W. Jensen, "Fully printable chipless RFID multi-parameter sensor," Sensors and Actuators A: Physical, Vol. 248, pp. 223-232, Sep. 2016. https://doi.org/10.1016/j.sna.2016.06.014
  15. J. Yeo and J.-I. Lee, "High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization," Sensors, Vol. 19, pp. 498, 2019. https://doi.org/10.3390/s19030498
  16. S. G. No, G. H. Choe, J. U. Gwag, and W. S. Lyu, "Preparation and application of poly(vinyl alcohol) having various molecular parameters," Polymer science and technology, Vol. 15, No. 1, pp. 4-11, Feb. 2004.
  17. D. Lu, M. Maasch, A. Penirschke, Y. Zheng, C. Damm, and R. Jakoby, "Broadband permittivity characterization of polyvinyl-alcohol film for humidity sensing applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 10, pp. 3255-3263, Oct. 2016. https://doi.org/10.1109/TMTT.2016.2597835
  18. S. G. O'Keefe and S. P. Kingsley, "Tunability of liquid dielectric resonator antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 6, pp. 533-536, 2007. https://doi.org/10.1109/LAWP.2007.907916