• Title/Summary/Keyword: 알칼리 활성 슬래그 콘크리트

Search Result 53, Processing Time 0.031 seconds

Evaluation on Chloride Binding Capacity of Mineral Mixed Paste Containing an Alkaline Activator (알칼리 활성화제를 사용한 무기질 혼합 페이스트의 염화물이온 고정화 평가)

  • Cho, Gyu-Hwan;Yeo, In-Hwan;Ji, Dong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • It is possible to achieve high strength ranging from 40 MPa to 70 MPa in alkali-activated slag concrete (AASC), and AASC is also known to have a finer pore structure due to its high latent hydraulicity and fineness of slag cement, which makes it difficult for chloride ions to penetrate. Electrophoresis is mostly used to calculate the effective diffusion coefficient of chloride ions, and then to evaluate resistance to salt damage. Few studies have been conducted on the fixation capacity of chloride ions in AASC. For this reason, in this study the chloride fixation within the hardened paste was evaluated according to the type and the amount of alkaline activators. As a result, it was revealed that among the test specimens, the chloride fixation was greatest in the paste containing $Na_2SiO_3$. In addition, it was found that as more activator was added, a higher level of chloride fixation was observed. Through this analysis, it can be concluded that the type and the amount of alkaline activators have a high correlation with the amount of C-S-H produced.

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite (알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석)

  • Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Synchrotron X-ray diffraction study on alkali-activated slag cement and fly ash-based geopolymers (플라이 애시 지오폴리머와 활성 슬래그 시멘트 생성물의 방사광 X선 회절 실험 연구)

  • Oh, Jae-Eun;Jun, Ssang-Sun;Choi, Se-Jin;Paulo, J.M-Monteiro
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.319-320
    • /
    • 2009
  • The alkali activation products of slag, fly ash C and fly ash F were investigated using compressive strength test and synchrotron x-ray diffraction. We propose that the predominantly amorphous geopolymer formed under ambient conditions is a disordered form of one of the ABC-6 group of zeolites, which includes poly-types such as hydroxycancrinite, hydroxysodalite, chabazite, levyne or fransinite.

  • PDF

Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites (고인성 섬유보강 무시멘트 복합체의 기초 배합 및 역학 실험)

  • Cho, Chang-Geun;Lim, Hyun-Jin;Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cement has been traditionally used as a main binding material of high ductile fiber reinforced cementitious composites. The purpose of this paper is to investigate the feasibility of using alkali-activated slag and polyvinyl alcohol (PVA) fibers for manufacturing high ductile fiber reinforced cementless composites. Two mixture proportions with proper flowability and mortar viscosity for easy fiber mixing and uniform fiber dispersion were selected based on alkali activators. Then, the slump flow, compression, uniaxial tension and bending tests were performed on the mixes to evaluate the basic properties of the composites. The cementless composites showed an average slump flow of 465 mm and tensile strain capacity of approximately 2% of due to formation of multiple micro-cracks. Test results demonstrated a feasibility of manufacturing high ductile fiber reinforced composites without using cement.

Analiysis of Micro-structure of Cementless Mortar Using Fly Ash and Blast Furnace Slag (플라이애시와 고로슬래그를 사용한 무시멘트 모르타르의 미세구조 분석)

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Ko, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Lee, Seoung-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.363-364
    • /
    • 2010
  • Recently, various researchers have studied alkali-activated concrete that do cementless as the binder. This study analyzed the effect on cementless mortar by flay ash and blast furnace slag of blast slag as the binder with no use of cement, by observing compressive strength and micro-structure.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water (해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성)

  • Jun, Yubin;Oh, Jae-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.299-308
    • /
    • 2016
  • This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar (알칼리활성 고로슬래그 모르타르의 탄산화 특성)

  • Song, Keum-Il;Yang, Keun-Hyeok;Lee, Bang-Yeon;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

Strength Development of Blended Sodium Alkali-Activated Ground Granulated Blast-Furnace Slag (GGBS) Mortar (혼합된 나트륨계열 활성화제에 의한 고로슬래그 기반 모르타르의 강도발현 특성)

  • Kim, Geon-Woo;Kim, Byeong-Jo;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Strength model for blasted furnace slag mortar blended with sodium was investigated in this study. The main parameters of AAS (alkali activated slag) mortar were dosage of alkali activator, water to binder ratio (W/B), and aggregate to binder ratio (A/B). For evaluating the property related to the dosage of alkali activator, sodium carbonate ($Na_2CO_3$) of 4~8% was added to 4% dosage of sodium hydroxide (NaOH). W/B and A/B was varied 0.45~0.60 and 2.05~2.85, respectively. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide ($Na_2O$) in sodium hydroxide and sodium carbonate is proposed to assess the compressive strength of alkali activated mortars. Test results clearly showed that the compressive strength development of alkali-activated mortars were significantly dependent on the proposed alkali quality coefficient. Compressive strength development of AAS mortars were also estimated using the formula specified in the previous study, which was calibrated using the collected database. Predictions from the simplified equations showed good agreements with the test results.