• Title/Summary/Keyword: 알칼리 연료전지

Search Result 39, Processing Time 0.02 seconds

A Study on Electrode Preparation for Alkaline Fuel Cell (알칼리 연료전지 전극제조에 관한 연구)

  • Hong, Jin Ki;Lee, Kyung Ju;Lee, Wha Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.57-67
    • /
    • 1990
  • This study is proposed to investigate the effect of electrode preparation method for Alkaline Fuel Cell using NaOH as an electrolyte on the Fuel Cell performance. The materials used for the preparation of electrode are Pt and Ag on Vulcan XC-72. Surface area of Vulcan XC-72 have different values according to the pretreatment conditions and the dispersion of Pt is dependent on the impregnation Particle size of Pt impregnated on unpretreated carbon was observed to be $20{\sim}40{\AA}$ and that on pretreated carbon in $N_2$ stream at $950^{\circ}C$ was found to be finely dispersed less then $15{\AA}$. The electrode performance was affected by the particle size of metals and operating temperature. It was revealed from this study that the optimum particle size about $30{\AA}$ and optimum temperature range is between $90{\sim}100^{\circ}C$.

  • PDF

A Study on Hydorgen Generation from Alkaline NaBH4 Solution Using Co-B Catalysts (알칼리 NaBH4 용액에서 Co-B 촉매를 이용한 수소발생반응에 관한 연구)

  • Jeong, SeougUk;Cho, EunAe;OH, In-Hwan;Hong, Sunn-Ahn;Kim, Sung-Hyun;Nam, Suk-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.137-143
    • /
    • 2004
  • For hydrogen generation from aqueous alkilne $NaBH_4$ solution, Co-B catalyst was prepared by chemical reduction method using $NaBH_4$ as a reduction chemical. Effects of solution temperature, amount of catalyst loading, $NaBH_4$ concentration, and NaOH (a base-stabilizer) concentration on the hydrogen generation rate were exmanined. Compared to Ru catalyst generally used, the low-cost Co-B catalyst exhibited almost comparable activity to the hydrogen generation reaction.

Hydrogen Production by the Reaction of Al and Alkaline Solution for PEMFC Application (알루미늄 알칼리용해에 의한 PEMFC용 수소 생성)

  • Sim, Woo-Jong;Na, Il-Chal;Song, Myung-Hyun;Chung, Hoi-Bum;Kim, Jeong-Ho;Kim, Tae-Hee;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Hydrogen production by the reaction of aluminum alloys and NaOH solution was studied for an automotive proton exchange membrane fuel cell(PEMFC) application. In our experiment conditions($30{\sim}75^{\circ}C$, NaOH $0.5{\sim}5M$), passivation of aluminum was not occurred. Higher rate of hydrogen production was observed at the reaction with Al alloys that contain impurities. With an increase in reaction temperature, hydrogen production rate by an increase in NaOH concentration increased much. When hydrogen was fed into the anode without filtering, PEMFC cell performance decreased 35% by ionic contamination such as $Na^+$ on the membrane and electrode. Thus, filtering of produced hydrogen is necessary for PEMFC operation.

HCl Removal from Coal-derived Syngas by the Solid Sorbents (고체 흡수제를 이용한 석탄 합성가스 중 HCl 정제)

  • Baek, Jeom-In;Lee, Kisun;Wi, Yong-Ho;Choi, Dong Hyeok;Eom, Tae-Hyoung;Lee, Joong Beom;Ryu, Chong Kul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.73.2-73.2
    • /
    • 2011
  • 석탄 합성가스 중에는 $H_2S$, HCl, $NH_3$와 같은 불순물이 포함되어 있다. 이러한 가스들은 오염가스 배출과 관련한 환경기준 준수와 터빈과 같은 설비의 보호를 위해 제거되어야 한다. 석탄 합성가스 중 HCl 농도는 탄종에 따라 다르기는 하지만 많게는 1000 ppmv 수준까지 존재한다. 합성가스를 이용하여 발전을 하는 경우 가스터빈 보호를 위해 HCl은 <3 ppmv 이하로 정제되어야 하고, 합성가스를 연료전지에 사용하고자 하는 경우에는 HCl을 <0.5 ppmv 수준까지, 화학원료로 사용하고자 하는 경우에는 <10 ppbv 수준까지 정제하여야 한다. 또한 HCl은 고온 탈황공정에 사용되는 흡수제의 활성에도 장기적으로 부정적인 영향을 주기 때문에 고온에서 HCl을 정제할 수 있는 흡수제가 필요하다. 본 연구에서는 알칼리금속을 활성물질로 사용하여 분무건조법으로 제조한 HCl 흡수제에 대해 물성 및 HCl과의 반응성을 살펴보았다. $300-500^{\circ}C$ 영역에서 K-계 및 Na-계 흡수제에 대해 고정층반응기에서 HCl 가스를 함유한 모사 합성가스를 이용하여 상압 조건에서 Cl 흡수능을 측정한 결과 15wt% 이상의 흡수능을 나타내었으며 반응온도가 높을수록 흡수능이 증가함을 알 수 있었다. XRD 분석을 통하여 Cl은 K 및 Na와 반응하여 KCl과 NaCl을 형성하면서 흡수됨을 알 수 있었다. 20 bar 조건에서 실험한 결과에서도 동일한 경향의 반응성을 나타내었으며 반응온도가 낮을수록 흡수능은 감소하지만 Cl을 더 낮은 농도로 정제할 수 있었다. 본 실험에 사용된 Na 및 K계 흡수제는 모두 연소 후 배가스 중 $CO_2$를 제거하기 위한 흡수제로 사용되는 고체 흡수제이다. 석탄화력발전소 배가스에 연계되어 $CO_2$ 회수실험에 사용되었던 사용 후 $CO_2$ 흡수제에 대해 HCl 흡수 실험을 수행한 결과에서도 우수한 HCl 제거 성능을 보여 주었다. 이로부터, 폐 $CO_2$ 흡수제의 HCl 흡수제로서의 활용가능성을 확인 하였다.

  • PDF

A Review Based on Ion Separation by Ion Exchange Membrane (이온교환막을 통한 이온분리에 대한 총설)

  • Assel, Sarsenbek;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.209-217
    • /
    • 2022
  • Ion exchange membrane (IEM) is an important class of membrane applied in batteries, fuel cells, chloride-alkali processes, etc to separate various mono and multivalent ions. The membrane process is based on the electrically driven force, green separation method, which is an emerging area in desalination of seawater and water treatment. Electrodialysis (ED) is a technique in which cations and anions move selectively along the IEM. Anion exchange membrane (AEM) is one of the important components of the ED process which is critical to enhancing the process efficiency. The introduction of cross-linking in the IEM improves the ion-selective separation performance due to the reduction of free volume. During the desalination of seawater by reverse osmosis (RO) process, there is a lot of dissolved salt present in the concentrate of RO. So, the ED process consisting of a monovalent cation-selective membrane reduces fouling and improves membrane flux. This review is divided into three sections such as electrodialysis (ED), anion exchange membrane (AEM), and cation exchange membrane (CEM).

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell II. Characterization of La0.6Sr0.4Co1-xFexO3 by using XRD, TG, and TPR (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 II. XRD, TG, TPR를 이용한 La0.6Sr0.4Co1-xFexO3의 특성 분석)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.554-564
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35, and 0.50) as an oxygen electrode catalyst. The changes in the catalytic properties as a function of Fe content were investigated by XRD, TG, and TPR. XRD patterns gave different lattice parameters of the catalysts. TG study revealed that Fe was so stabilized in the perovskite structure as to be hardly reduced even up to $900^{\circ}C$, and the amount of oxygen which was eliminated at high temperature increased with the fraction of Fe because Fe induced the increase of Co-O binding energy. From TPR study, ${\alpha}$-(low temperature peak) and ${\beta}$-(high temperature peak)states were observed. The bond strength of the ${\beta}$-species which was associated strongly with Co of the perovskite increased proportionally with the fraction of Fe. The ${\alpha}$-species, reversible oxygen, was the active species in the oxygen reduction. The ${\alpha}$-peak temperature which reflected the binding energy between Co and ${\alpha}$-state oxygen moved to lower temperature with the increase of lattice parameter of the catalytst due to the increase of Fe content. The decrease in the binding energy increased the activity in the oxygen reduction, but the decrease of ${\alpha}$-species with the increase of Fe content decreased the activity. The increase in the surface area with Fe content had little effect on the activity.

  • PDF

Oxygen Reduction Reaction of La1-xCaxCoO3 of Gas Diffusion Electrode in Alkaline Fuel Cell (알칼리형 연료전지용 La1-xCaxCoO3 기체확산전극의 산소환원반응)

  • Shim, Joong-Pyo;Park, Yong-Suk;Lee, Hong-Ki;Park, Soo-Gil;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.992-998
    • /
    • 1996
  • The $La_{0.8}Ca_{0.2}CoO_3$ prepared by a citrate process was shown to have higher oxygen reduction current density and specific activity than $LaCoO_3$, $La_{0.6}Ca_{0.4}CoO_3$. In the cyclic voltammogram, an oxygen desorption peak of a $La_{0.8}Ca_{0.2}CoO_3$+carbon electrode was larger than that of a only carbon electrode. $La_{0.8}Ca_{0.2}CoO_3$ sintered at $900^{\circ}C$ for 5 hours was shown high oxygen reduction current density because of the particle size distribution and sintering effect.

  • PDF

Characteristics of Chromium Addition on Raney Nickel Catalyst for AFC (AFC용 Raney 니켈 촉매의 크롬 첨가 특성)

  • Lee, Hong-Ki
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.703-707
    • /
    • 2001
  • The effects of chromium addition on the catalytic activity of Raney nickel in alkaline fuel cell (AFC) have been studied. When the catalysts are prepared from various contents of chromium, the electrochemical characteristics shows the highest mass activity of 3.588 A/g. Operating temperature and electrolyte concentration of half cell were $80^{\circ}C$ and 6N KOH, respectively. With the addition of chromium, the particle size is diminished from 12.11 $\mu\textrm{m}$ to 11.07 $\mu\textrm{m}$ and the decrease of particle size contributes to the enlargement of the specific surface area from 0.653 $\m^2$/g to 0.685$\m^2$/g. The residual aluminium contents of Raney nickel surface are considerably influenced by the particle size and chromium acts as sintering inhibitor.

  • PDF

Hydrolysis Stability of Sulfonated Phthalic and Naphthalenic Polyimide with Ester Bond (에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구)

  • 이영무;이창현;손준용;박호범
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Sulfonated polyimides had been utilized and studied widely as available materials in chloro-alkali electrolysis, cationic exchange resins, and so on. However, a slow decrease in performance during experiments had been reported, which could be attributed to a loss of ionic conductivity related to either a continuous dehydration or polymer degradation. One of main reasons to account for the degradation of sulfonated polymers is the hydrolysis leading to polymer chain scission and decrement of molecular weight. Therefore, the objective of our study was to investigate possible imide cycle and additional ester bond cleavage connected with $SO_3$H presence under hydrated condition. In order to confirm and obtain as clear information as possible about breakages of bonds via $^1H\; and \;^{13}C$ NMR and IR spectroscopic analyses, our study was performed by model compound. Consequently, model compounds with both phthalic and naphthalenic imide ring and ester bonds were synthesized to evaluate the hydrolysis stability of sulfonated polyimide. The experiments were performed for prepared model compounds before and after aging in deionized water at $80^{\circ}C$ and were terminated by lyophilization technique. The aging products were finally analyzed by NMR and IR spectroscopy.