• Title/Summary/Keyword: 알루미늄 분말

Search Result 232, Processing Time 0.03 seconds

Technology Trend of Powder-Metallurgical Aluminum Parts (알루미늄 분말야금부품의 기술동향)

  • Lee, Jae-Wook;Yang, Sang-Sun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.339-347
    • /
    • 2007
  • 알루미늄 분말야금부품은 철계 분말부품에 비해 가볍고 알루미늄 주조부품에 비해 우수한 기계적 물성을 갖는다. 단, 상대적으로 비싼 가격이 이 부품의 응용을 제약하는 장벽이었으나 최근의 환경과 에너지 문제에 대한 세계적인 관심은 이를 극복할 수 있는 계기를 제공하고 있다. 선진국은 이미 일본을 중심으로 1990년대부터 알루미늄 분말부품에 대한 기술개발을 진행하였고 현재는 다양한 상용 부품을 판매하고 있으며 조만간 그 판매량이 크게 증가할 것으로 예상된다. 이에 이 글에서는 국내 관련 연구자들의 이해를 돕고자 알루미늄 분말야금부품의 국내외 기술개발 동향, 특허 동향, 원재료 동향 등을 분석하여 소개한다.

Preparation of Aluminum Flake Powder by Recycling of Foil Scrap (알루미늄 호일 스크랩 재활용에 의한 플레이크 분말 제조)

  • 홍성현;김병기
    • Resources Recycling
    • /
    • v.9 no.4
    • /
    • pp.50-55
    • /
    • 2000
  • Recycling technology of aluminum foil scraps into aluminum flake powder by ball milling in dry or wet conditions was studied. Aluminum foil were laminated each other, elongated through microforging by the falling balls, fragmented into small foils and then changed into flake powder during ball milling. It is also possible to recycle foil scraps with thickness less than $60\mu\textrm{m}$ into aluminum paste by wet ball milling. As initial foil thickness decreases, foil is easily milled to flake powder by wet milling in mineral spirits. the appearance and the opaque character of glass painted with aluminum paste obtained by wet milling of foils are similar to those of aluminum paste made by ball milling of gas atomized powder.

  • PDF

Development of combustion test device for study of aluminum powder combustion (알루미늄 분말 연소시험을 위한 장치 개발)

  • Hwang, Yong-Seok;Lee, Ji-Hyung;Lee, Kyung-Hun;Kim, Kwang-Yun;Lee, Sung-Woong;Yeo, Tae-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.548-553
    • /
    • 2011
  • The device for studying combustion characteristic of aluminum powder and water was developed. The device has ability to adjust temperature, pressure, and equivalent ratio to some specified value which effect on combustion characteristic of aluminum and water mixture. Methane combustor, water supply device, aluminum powder feeder, and linear combustor are assembled to aluminum combustion test device. Each device has the ability to supply matter to combustor on steady and quantitatively controlled manner and test sequence specified by user can be automatically controlled. The combustion of aluminum powder was observed when integrated device was operated normally.

  • PDF

Numerical Analysis of Two-Phase Aluminum Dust Combustion according to Single Aluminum Particle Combustion Model (단일 알루미늄 입자 연소 모델에 따른 2상 알루미늄 분말 연소장 시뮬레이션)

  • Kim, Sang-Min;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.460-466
    • /
    • 2010
  • 단일 알루미늄의 연소 모델을 사용하여 알루미늄 분말의 점화 과정에 대한 전산유체 해석 기법을 개발하였다. 유동의 계산은 Reynolds averaged Navier-Stokes식을 사용하였으며, $k-{\epsilon}$ 난류모델을 적용하였다. 입자는 Eulerian-Lagrangian 방법을 사용하여 유동과 독립적으로 계산을 수행하였으며 상용 전산유체해석 프로그램인 Fluent 6.3을 사용하여 해석을 수행하였다. 단일 모델에서 사용한 대류 및 복사 열전달, 표면이상반응, 알루미늄의 용융열을 입자 가열원으로 고려하였다. 같은 조건을 사용하여 단일 입자 모델 계산과 전산유체해석을 수행하였으며, 두 결과는 5% 이내로 잘 일치 하였다. 이를 통해 전산유체해석에서 알루미늄의 점화를 모사할 수 있음을 확인하였다.

  • PDF

Optimization of slurry for manufacturing spray-dried aluminum silicate granular powder (분무 건조 알루미늄 실리케이트 과립 분말 제조를 위한 슬러리 최적화 연구)

  • Kim, Hyeonjin;Sun, Woogyeong;Jo, Hyesoo;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.264-269
    • /
    • 2021
  • In this study, amorphous aluminum silicate powder was prepared using co-precipitation method, and the influence of spray-dried aluminum silicate granular powder was analyzed and optimized by controlling the amount of aluminum silicate powder and dispersant added to the slurry. As a result, granular powder was optimally produced under the conditions of powder content of aluminum silicate slurry of 27.5 wt% or less, dispersant addition amount of 0.8 wt% or more, pH 6~9. An average particle size of granular powder showed approximately 14 ㎛ at the powder contents of 20 and 22.5 wt% of the slurry, and approximately 19 ㎛ at the powder contents of 25 and 27.5 wt% of the slurry.

Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma (플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.737-744
    • /
    • 2011
  • The success of continuous aluminum powder combustion with steam plasma is different from hydrocarbon ignition source. Ignition characteristics of aluminum powder with high temperature thermal plasma is studied with oxidizer-free environment. Experiment with argon plasma has same temperature conditions at 4500 K and particle feeding condition for previous combustion test with steam plasma and swirl combustor. The temperature of the plasma was measured using Optical Emission Spectroscopy method. Ignition characteristics were analyzed by SEM image and EDS. Aluminum powder with plasma has rapid evaporation mechanism contrast to hydrocarbon ignition source. It enhances to aluminum powder effective ignition characteristics.

  • PDF

Cementation of Tin by Aluminium from Hydrochloric acid Solution (염산산성(鹽酸酸性) 용액(溶液)중에서 알루미늄에 의한 주석(朱錫)의 치환반응(置換反應))

  • Ahn, Jae-Woo;So, Sun-Seob
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • A study on the cementation for the recovery of tin with aluminium in the hydrochloric acid solution was carried out. Parameters, such as aluminium metal equivalent, pH, reaction time, reaction temperature and the concentration of chloride ions were investigated. The experimental results showed that the cementation rate of Sn(II) ions increased with increase of the addition amount of aluminium powders, temperature, pH and the concentration of chloride ions in hydrochloric acid solution. From the results, the optinum conditions for recovery of metallic tin by cementation with aluminium metal powders were proposed.

The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust ($Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성)

  • Kim, Youn-Che;Song, Youn-Jun;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 2013
  • Aluminium powder as reductant in aluminothermy process needs a fine particle size under 200 mesh, but it is not easy economically to make that because of its high ductility and powder production cost. In order to reduce the production cost of fine aluminum powder as reductant of $Mn_3O_4$ waste dust, therefore, the properties of aluminium alloy powder were investigated. Aluminium alloy ingot containing large amount of manganese can be crushed easily because of its intermetallic compounds having brittle properties. The manganese is also main element in ferro-manganese. We can obtain economically Al-15%Mn alloy powder by mechanical comminution process. And the result of thermite reaction using Al-15% Mn alloy powder instead of pure Al powder showed the fact that can be obtained the ferro-manganese which have a high purity in case of using pure aluminium powder as reductant. The recovery of manganese from $Mn_3O_4$ waste dust with Al-15%Mn alloy powder was higher level of about 70% than about 65% in case of using aluminium powder, that is due to lower spatter loss.

Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma (유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Aluminum nitride, which has outstanding properties such as high thermal conductivity and electrical resistivity, has been received a great attention as a substrate and packaging material of semiconductor devices. Since aluminum nitride has a high sintering temperature of 2173 K and its properties depends on the impurity level, it is necessary to synthesize high-purity and nano-sized aluminum nitride powders for the applications. In this research, we synthesized high purity aluminum nitride nanopowders from aluminum using RF induction thermal plasma system. Sheath gas (NH3) flow was controlled to establish the synthesis condition of high purity aluminum nitride nanopowders. The obtained aluminum nitride nanopowders were evaluated by XRD, SEM, TEM, BET, FTIR and N-O analysis.