• Title/Summary/Keyword: 알루미늄 복합재

Search Result 158, Processing Time 0.024 seconds

Abrasive Wear of Hybrid Metal Matrix Composites for High Wear Resistance (고 내마모성 혼합 금속복합재료의 연삭마모)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.12-22
    • /
    • 1999
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study wear behavior of $Al/Al_2O_3/C$ hybrid MMCs fabricated by squeeze infiltration method was characterized by the abrasive wear test under various sliding speeds at room and high temperature. Wear resistance of MMCs was improved due to the presence of reinforcements at high sliding speed. Especially wear resistance of carbon hybrid MMCs was superior to other materials because of its solid lubrication of carbon. The friction coefficient of MMCs was not affected by the sliding speed.

  • PDF

Design and Verification of a Novel Composite Sandwich Joint Structure (새로운 개념의 복합재 샌드위치 체결부 구조의 설계와 검증)

  • Kwak, Byeong-Su;Ju, Hyun-woo;Kim, Hong-Il;Dong, Seung-Jin;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.384-392
    • /
    • 2017
  • Sandwich panels with three different joint configurations were tested to design a novel sandwich joint structure that can effectively support both the tensile and compressive loads. The sandwich core was mainly aluminum flex honeycomb but the PMI foam core was limitedly applied to the ramp area which is transition part from sandwich to solid laminate. The face of sandwich panel was made of carbon fiber composite. For configuration 1, the composite flange and the sandwich panel were cocured. For configurations 2 and 3, an aluminum flange was fastened to the solid laminate by HI-LOK pins and adhesive. The average compressive failure loads of configurations 1, 2, and 3 were 295, 226, and 291 kN, respectively, and the average tensile failure loads were 47.3 (delamination), 83.7 (bolt failure), and 291 (fixture damage) kN, respectively. Considering the compressive failure loads only, both the configurations 1 and 3 showed good performance. However, the configuration 1 showed delamination in the corner of the composite flange under tension at early stage of loading. Therefore, it was confirmed that the structure that can effectively support tension and compressive loads at the same time is the configuration 3 which used a mechanically fastened aluminum flange so that there is no risk of delamination at the corner.

Hierarchical Finite-Element Modeling of SiCp/Al2124-T4 Composites with Dislocation Plasticity and Size-Dependent Failure (전위 소성과 크기 종속 파손을 고려한 SiCp/Al2124-T4 복합재의 계층적 유한요소 모델링)

  • Suh, Yeong-Sung;Kim, Yong-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.187-194
    • /
    • 2012
  • The strength of particle-reinforced metal matrix composites is, in general, known to be increased by the geometrically necessary dislocations punched around a particle that form during cooling after consolidation because of coefficient of thermal expansion (CTE) mismatch between the particle and the matrix. An additional strength increase may also be observed, since another type of geometrically necessary dislocation can be formed during extensive deformation as a result of the strain gradient plasticity due to the elastic-plastic mismatch between the particle and the matrix. In this paper, the magnitudes of these two types of dislocations are calculated based on the dislocation plasticity. The dislocations are then converted to the respective strengths and allocated hierarchically to the matrix around the particle in the axisymmetric finite-element unit cell model. The proposed method is shown to be very effective by performing finite-element strength analysis of $SiC_p$/Al2124-T4 composites that included ductile failure in the matrix and particlematrix decohesion. The predicted results for different particle sizes and volume fractions show that the length scale effect of the particle size obviously affects the strength and failure behavior of the particle-reinforced metal matrix composites.

Study on the Microstructure and Mechanical Properties of High Volume Fraction TiB2-Al1050 Metal Matrix Composites (고체적률 TiB2-Al1050 금속복합재료의 미세조직 및 기계적 특성 연구)

  • Ko, Seongmin;Park, Hyeonjae;Lee, Yeong-Hwan;Shin, Sangmin;Lee, Donghyun;Jo, Ilguk;Lee, Sang-Bok;Lee, Sang-Kwan;Cho, Seungchan
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this study, Al1050 composites reinforced with uniformly dispersed, high volume fraction $TiB_2$ particles were fabricated by liquid pressing process and analyzed to microstructure, mechanical properties. Hardness, ultimate tensile strength and compressive yield strength of the 56 vol.% $TiB_2$-Al1050 composite increased to 10, 4.5 and 9.8 times, respectively, compared with those of the Al1050 due to dispersion hardening effect of uniformly dispersed $TiB_2$ in the Al matrix.

특허기술평가결과 활용사례-(주)송원

  • Korea Invention Promotion Association
    • 발명특허
    • /
    • v.31 no.7 s.361
    • /
    • pp.66-68
    • /
    • 2006
  • 건축을 하는데 있어 무엇보다 중요한 것은 정확한 설계, 시공 및 뛰어난 기술력이며, 각 부분 부분마다의 정확성과 뛰어난 기술이 어우러져 튼튼하고 아름다운 집이 탕생하게 되는 것이다. 이런 조건은 충족시키는 첫 번째 요소라 할 수 있는 국내 건축용 외장재 시장은 약 1조원대의 시장을 형성하고 있으며, 전체 건축비의 약 10%정도를 차지한다. 건축용 외장재 시장은 석재, 유리, 알루미늄, 아연도금철판의 기본 소재에 다양한 가공을 통하여 제품을 생산하고 있으며, 가공 및 시공의 편의성으로 인해 금속계 패널이 점진적으로 시장을 주도하고 있다. 금속계 패널은 크게 복합판넬과 sheet 패널시장으로 양분되며, sheet패널시장이 약 20%정도의 시장을 차지하고 있다. 해외의 경우, 유럽과 일본은 알루미늄계열의 패널과 미국은 철판계열의 패널이 시장을 주도하고 있다.

  • PDF

The Studies on the Fabrication and Properties of Friction Materials toy Aluminium Alloy Disk (알루미늄 합금 디스크용 마찰재의 제조 및 그 특성에 관한 연구)

  • 손태관;장상희;제갈영순
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.22-28
    • /
    • 2003
  • This article deals with the manufacture and test results of asbestos-free friction material for Aluminium at toy disk. In order to obtain optimum formulation, various formulations of fibres, matrix, modifiers, fillers, etc were designed and evaluated. The constant friction and brake dynamometer tests were performed to know weak and strong point for each friction material. The C21 formulation of various tested formulations exhibited superior friction constant(0.38∼38), fade rate (18%) by JASO C406 test mode and maximum wear 1.6 mm. disc wear 0.08 mm by JASO C427 test mode. The surface morphology of AL alloy disk(before and after test) was observed by Scanning Electron Microscope(SEM) and Image Analyzer.

Evaluation of Mechanical and Vibration Characteristics of Laminated Damping Aluminum Panel for Automobile Components (자동차 부품용 알루미늄 접합 제진 패널의 기계적 특성 및 진동 특성 평가)

  • Bae, Sung-Youl;Bae, Ki-Man;Kim, Yun-Hae
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • The objective of this research is to study the mechanical and vibration characteristics of vibration damping aluminum panels for automotive parts. For this purpose, the test and simulation results of aluminum-resin hybrid materials and aluminum sheet materials were compared. Tensile strength and elastic modulus of the hybrid material were approximately 10% lower than aluminum sheet. Also, it was showed that the hybrid material have lower natural frequency than aluminum sheet, and it was confirmed that loss factor increases as the thickness of resin increases. Finally, it is confirmed that the test results and the analysis results are similar with each other and the performance prediction of the materials are possible by FEA.

An Experimental Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재와 알루미늄 이종재료 단일겹침 접착 체결부의 강도에 관한 실험 연구)

  • Kim, Tae-Hwan;Lee, Chang-Jae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.204-211
    • /
    • 2007
  • Experiments were conducted to investigate the failure and strengths of carbon composite-to-aluminum single-lap bonded joints with 5 different bonding lengths. Joint specimens were fabricated to have secondary bonding of laminate and aluminum with a film type adhesive, FM73m. Tested joints have the bonding strengths between the values of aluminum-to-aluminum joints and composite-to-composite joints. In the joints with bonding length-to-width ratio smaller than 1, the strength decreases as the bonding length increases. In the joints with the ratio larger than 1, however, the strength converges to a constant value. Final failure mode of all the specimens was delamination. To use the maximum strength of the adhesive, it is important to design the joint to have strong resistance to delamination.

Study on Structural Analysis of DCB Structure with Aluminum Foam (알루미늄 폼을 갖는 DCB 구조체의 구조해석에 관한 연구)

  • Choi, Hae-Kyu;Kim, Sei-Hwan;Cho, Jae-Ung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05b
    • /
    • pp.617-619
    • /
    • 2012
  • 본 논문에서는 알루미늄 폼 복합재료로 된 DCB(이중외팔보) 구조체의 파괴 거동을 시뮬레이션 해석하였다. 시뮬레이션 해석에 사용된 모델은 영국 공업규격과 ISO국제규격에 의거하여 3D모델을 설계하였다. 해석 결과 모델의 두께가 두꺼울수록 발생한 크랙의 길이가 길게 나타났고, 높은 하중이 발생하였다. 이와 같은 연구에서 얻어진 해석 결과를 통하여 알루미늄 폼 재질로 접합된 실제 복합재 구조물에 적용시켜 파괴거동을 분석하고 그 기계적인 특성을 파악할 수 있다.

  • PDF

KSR-III 복합재 가압탱크의 설계 및 제작

  • Kong, Cheol-Won;Yoon, Chong-Hoon;Jang, Young-Soon;Yi, Yeong-Moo
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.124-132
    • /
    • 2003
  • This paper described the structural design and the fabrication procedure of KSR-III composite pressure tank. The type of the composite pressure tank was COPV(Composite Overwrapped Pressure Vessel). A non-load sharing liner was made of aluminum 6061-0 and the liner provided a helium gas seal. The composite pressure tank was winded using T700 carbon/epoxy on the liner. Because the aluminum liner was thin, multiple cure cycles were applied to the filament winding technique. The multiple cure cycles prevented the liner-cylinder from losing a circular shape. A fitting force at the metallic boss was spread to the carbon fiber by a boss ring. The boss ring also prevented a local deformation at the boss part.

  • PDF