• 제목/요약/키워드: 알고리즘 요소

검색결과 2,813건 처리시간 0.077초

IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구 (Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge)

  • 민지영;박영수;박태림;길윤섭;진승섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권3호
    • /
    • pp.66-73
    • /
    • 2024
  • 사장교에서 케이블 부재는 하중을 전달하는 가장 중요한 부재 중 하나이다. 따라서 사장교의 구조적 상태 및 안정성을 평가하기 위해서는 케이블의 상태를 파악하기 위해 지속적인 모니터링을 수행하는 것이 중요하다. 이러한 모니터링 시스템은 케이블에 부착된 가속도계를 통해 진동을 측정하고 이를 토대로 케이블 장력과 감쇠비를 추정하고, 이를 토대로 케이블의 상태 평가의 기초자료로 활용한다. 이러한 상시 모니터링 시스템은 지속적으로 진동 데이터를 측정하기 때문에 데이터 수집 시스템을 포함한 하드웨어가 안정적이고 전력 효율성이 높아야 한다. 또한 지속적으로 생성되는 대량의 진동 신호들을 사람의 개입을 최소화하며 안정적으로 분석할 수 있는 자율모니터링 시스템이 요구된다. 본 연구에서는 IoT를 활용한 도메인 지식 기반 자율 모니터링 시스템을 개발하였다. 케이블 자율 모니터링 시스템을 구현하기 위한 가장 중요한 요소는 케이블의 장력과 감쇠비의 추정을 위한 진동 신호의 주파수 영역 내 발생하는 첨두의 자동 추정이다. 본 연구에서는 도메인 지식 기반 첨두 자동 추정 알고리즘을 데이터 수집 및 On-Board Processing이 가능한 IoT 시스템에 내장하여 IoT 센서 단에서 Edge computing이 가능한 효율적인 IoT 자율 모니터링 시스템을 구현하였다. 개발된 자율 모니터링 시스템을 국내 사장교에 설치하여 장기간 현장 운영 성능을 평가하였으며, 그 결과 장기 데이터 수신률, 장력 추정의 정확성, 효율성 측면에서 기존 시스템과 비교하여 작동 성능을 확인하고 검증하였다.

주행거리 기반 충전 수요를 고려한 전기자동차 완속 충전기 최적 공급량 산출 (Optimal Supply Calculation of Electric Vehicle Slow Chargers Considering Charging Demand Based on Driving Distance)

  • 노기민;김수재;추상호
    • 한국ITS학회 논문지
    • /
    • 제23권2호
    • /
    • pp.142-156
    • /
    • 2024
  • 교통부문 탄소중립을 위한 전기자동차로의 전환에 있어 충분한 충전 인프라의 구축은 중요한 선행요소이다. 특히, 거주지의 충전 인프라 구축은 필수적이다. 우리나라의 주거형태는 주로 공동주택이며, 다수의 거주민을 위한 공공 충전기가 공급되어야 한다. 정부는 충전시설과 전기자동차 전용주차구역의 확보를 법적으로 규정하고 있으나, 주차면수만을 산출근거로 한다. 완속 충전기는 3.5kW 과금형 콘센트와 7kW 완속 충전기가 주를 이룬다. 전자가 충전기 설치 및 이용에 유리하지만, 충전속도가 느려 두 가지 형태의 충전기는 양립이 필요하다. 본 연구에서는 일일 주행거리를 기반으로 산정한 전기자동차의 충전 수요에 대응할 수 있는 충전기를 할당하는 최적화 모형을 제시하였다. 또한, 메타 휴리스틱 알고리즘인 Tabu Search를 사용하여 최적화 모형을 만족하는 것과 동시에 충전기 공급 및 충전 비용을 최소화할 수 있는 완속 충전기 공급량을 산정하였다. 사례 분석을 위해 개인통행실태조사자료를 사용해 주행거리를 산정하였으며, 가상의 충전 시나리오 및 환경을 설정하여 100대의 전기자동차 충전 수요에 대응하는 22대의 3.5kW 과금형 콘센트를 최적 공급량으로 산정하였다.

UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템 (A Fusion Sensor System for Efficient Road Surface Monitorinq on UGV)

  • 유성환;김서연;신지우;김태식;정진만
    • 스마트미디어저널
    • /
    • 제13권3호
    • /
    • pp.18-26
    • /
    • 2024
  • 노면 모니터링은 노면의 함몰 정도 및 크랙 감지와 같은 위험 요소 관리를 통해 도로 환경의 안전성을 유지하는 필수적인 과정이다. 고성능 2D 레이저 센서를 탑재한 자율주행 기반 UGV를 활용한 정밀 측정이 가능하지만, 고성능 센서의 에너지 소모량 증가로 인해 배터리 용량에 대한 한계가 있다. 본 논문에서는 UGV에서 효율적인 노면 모니터링을 위한 퓨전 센서 시스템을 제안한다. 제안된 퓨전 센서 시스템은 카메라를 통한 칼라 정보와 선레이저 센서를 통한 깊이 정보를 결합하여 노면 모니터링의 정밀한 변위 탐지를 가능하게 한다. 또한 카메라 센서를 이용해 모니터링 대상의 탐지 여부에 따라 선레이저 센서 스캔 주파수를 동적으로 제어하는 동적 샘플링 알고리즘을 적용함으로써 불필요한 에너지 소모를 절감한다. 제안된 퓨전 센서 시스템에서의 평균 소비전력 모델을 제시하고 다양한 미션 환경의 크랙 분포 및 센서 특성을 고려하여 에너지 효율성을 분석한다. 성능 분석 결과, 선레이저 센서의 Active 상태 소비 전력이 Saving 상태의 2배이고, λ=10, µ=10인 환경에서 고정 샘플링 기법에 비해 전력 소비 효율이 13.3% 향상됨을 확인하였다.

통합 센서 시스템을 이용한 고기능 순찰 로봇의 연구모델 제안 (Proposal for Research Model of High-Function Patrol Robot using Integrated Sensor System)

  • 유병천;신승중
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.77-85
    • /
    • 2024
  • 본 논문에서는 열화상 카메라, 스피드돔 카메라, PTZ 카메라, 레이더, 라이다 센서와 스마트폰을 통합한 순찰 로봇을 설계하고 구현하였다. 이 로봇은 복잡한 환경에서도 효율적으로 감시하고 대응할 수 있는 능력을 갖추고 있으며, 특히 야간이나 가시성이 낮은 조건에서도 높은 성능을 발휘할 수 있도록 설계되었다. 로봇의 이동성을 위해 궤도 이동체계를 선택하였고, 실시간 데이터 처리와 의사결정을 위해 스마트폰 기반의 제어 시스템을 개발하였다. 다양한 센서의 조합은 로봇이 환경을 포괄적으로 인식하고 위험 요소를 신속하게 감지할 수 있게 해준다. 열화상 카메라는 야간 감시에, 스피드돔과 PTZ 카메라는 광범위한 영역 모니터링에, 레이더와 라이다는 장애물 탐지와 회피에 활용된다. 스마트폰 기반 제어 시스템은 사용자 친화적인 인터페이스를 제공한다. 제안된 로봇 시스템은 보안, 감시, 재난 대응 등 다양한 분야에서 활용 가능하다. 향후 연구에서는 로봇의 자율 순찰 알고리즘 개선, 다중 로봇 협업 시스템 개발, 실제 환경에서의 장기 테스트 등이 수행되어야 할 것이다. 본 연구는 지능형 감시 로봇 분야의 발전에 기여할 것으로 기대된다.

다면체영역분할을 이용한 SPH의 충돌 및 병렬해석 (The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition)

  • 탁문호
    • 한국지반환경공학회 논문집
    • /
    • 제25권4호
    • /
    • pp.21-28
    • /
    • 2024
  • 본 연구에서는 SPH 해석을 위한 다면체영역분할 기법이 소개된다. SPH 기법은 유체 유동 모사를 위한 수치해석기법으로 무요소기법(meshless method) 중 하나이다. 유동성 지반 또는 고체-유체 상호작용 해석 등에 유용하게 쓰일 수 있다. SPH는 입자기반 해석이기 때문에 입자가 많을수록 결과의 정확도는 높아지지만 수치적 효율성은 떨어진다. 일반적으로 해석의 효율성을 높이기 위해 병렬 프로세싱 알고리즘과 함께 쓰이는데 직교좌표계 기반의 영역분할 기법이 대표적이다. 그러나 복잡한 기하학적 형태나 동적 경계조건에서 유동 모사 등을 병렬 해석하기 위해서는 직교좌표계 영역분할 방법이 적합하지 않다. 소개하는 다면체영역분할 기법은 이와 같은 문제에서 병렬효율성을 높일 수 있는 장점을 갖는다. 다양한 형태의 3차원 다면체 요소로 분할하여 문제에 적합하게 모델링할 수 있다. SPH 입자들의 물리적 값들은 smoothing 길이 이내의 주위 입자들 정보를 이용하여 계산된다. 영역분할 시 물리적으로 분리될 수 있는 입자정보들을 코어간 공유할 수 있는 방법과 병렬효율성이 떨어질 수 있는 cross-point에서의 정보공유 방법이 소개된다. 수치해석 예제를 통하여 제안된 방법의 병렬효율성은 12코어까지 95%에 근접하였다. 이후 코어가 증가할수록 코어간 공유되는 정보량이 많아져 병렬효율성이 떨어지는 문제가 발생되기도 하였다.

인공신경망을 이용한 FRP 보강 콘크리트 보의 휨모멘트 평가 (Evaluation of the Bending Moment of FRP Reinforced Concrete Using Artificial Neural Network)

  • 박도경
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.179-186
    • /
    • 2006
  • 본 연구에서는 FRP Rebar로 보강된 철근콘크리트 보의 휨성능을 평가할 수 있는 모형을 개발하기 위하여 인공신경망 중 다층인식자 모형을 사용하였다. 인공신경망 모형에 사용될 학습자료들은 기존 연구자료들의 데이터를 이용하였다. 입력층의 독립변수는 휨성능에 주요 요소인 폭, 유효깊이, 압축강도, FRP 보강비, FRP 균형철근비을 사용하였다. 출력층 종속변수는 실험에서 측정된 모멘트 성능을 사용하였다. 개발된 인공신경망 모형은 GFRP, CFRP, AFRP Rebar 적용이 모두 가능하며, 모형의 검증은 다른 선행 연구자들이 수행한 자료를 이용하였다. 인공신경망 모형 추정결과 ANN(0.05) 모형의 경우에 비교적 정확한 휨성능 추정값을 나타낸 반면, ANN(0.1) 모형에서는 다소 오차가 발생하였다. 인공신경망 모형의 검증결과 주어진 실험 데이터 값과 비교적 일치하고 있음을 확인할 수 있었다. 또한, 휨성능 평가 변수에 대한 민감도 분석결과 유효깊이의 영향이 가장 크고 FRP 철근비, FRP 균형철근비, 압축강도, 폭으로 분석되었다.

자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법 (Evaluation method for interoperability of weapon systems applying natural language processing techniques)

  • 김용균;이동현
    • 한국국방기술학회 논문지
    • /
    • 제5권3호
    • /
    • pp.8-17
    • /
    • 2023
  • 현재의 무기체계는 다양한 표준과 프로토콜이 적용된 복합무기체계가 운용되어서 전장에서 연합 및 합동작전시 원활한 정보교환 실패의 위험이 있다. 무기체계간 신속한 상황판단으로 핵심표적에 대한 정밀타격을 수행하기 위한 무기체계들의 상호운용성은 전쟁수행의 핵심요소이다. 한국군은 전력화 이후 다수의 소프트웨어 및 하드웨어의 형상변경과 성능개선 소요가 발생하고 있으나, 상호운용성에 미치는 영향에 대한 검증제도가 없으며, 관련 시험 도구 및 시설도 전무한 실정이다. 또한 연합 및 합동훈련시 무기 / 전력지원체계의 세부 운용방식과 소프트웨어를 임의로 변경한 후 이에 따른 사용자 간 오류가 빈번히 발생하고 있다. 그래서 주기적인 무기체계간 상호운용성 검증이 필요하다. 이러한 문제를 해결하기 위하여 사람이 평가기간을 잡아서 1번 평가를 진행하는것이 아니라, AI가 24시간 무기 / 전력지원 체계간 상호운용성을 지속적으로 평가하여 전쟁수행능력을 고도화해야 한다, 이러한 문제점을 해결하기 위하여 자연어 처리기법(①Word2Vec 모델 ②FastText 모델 ③Swivel 모델)을 적용(공개된 알고리즘과 소스코드 사용)하여 국방상호운용성 능력향상을 위한 사전연구를 수행하였다. 이 실험의 결과를 바탕으로 사람에 의존하지 않고, 자동화된 국방상호운용성 평가도구를 구현하기 위한 방법론(자연어 처리 모델을 통한 상호운용성 소요평가 / 수준측정의 자동화된 평가)을 향후 제시하고자 한다.

  • PDF

자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구 (Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model)

  • 김지환;김주영
    • 한국ITS학회 논문지
    • /
    • 제23권4호
    • /
    • pp.110-126
    • /
    • 2024
  • 자율주차의 요소 중 하나인 경로계획(Path-planning)을 제안한다. 실제 주차장을 참고하여 수직주차와 수평주차로 주차장의 차로 너비, 주차 공간의 너비, 길이 등 주차장 구조와 주차 환경을 다양하게 설정한다. 출발점와 도착지점 등 각도와 환경을 다양하게 설정하여 경로데이터를 수집하고 수집한 데이터를 Deep Learning model에 넣어 학습시켜 자동주차경로계획 모델을 제안한다. 분석결과, 기 알고리즘(Hybrid A-star, Reeds-Shepp Curve)과 딥러닝 모델 모두 장애물에 충돌하지 않고 비슷한 경로를 생성하지만, 거리와 소모시간이 각각 0.59%, 0.61% 감소하여 효율적인 경로가 생성되었다. 또한, Switching point도 1.3개에서 1.2개로 감소하여 직진과 후진을 최대한으로 줄여 운전자의 피로를 줄일 수 있을거라 생각된다. 마지막으로 경로생성시간은 42.76% 감소하여 효율적이고 신속한 경로생성이 가능하여 향후 자율주행 중 자율주차의 경로 계획생성에 활용될 수 있으며, 차량작도에 따라 이동하는 주차로봇의 경로생성에도 활용될 수 있을 것으로 보인다.

적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지 (Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice)

  • 이준호;박지현;주지용;한석기;정용석;김영수
    • 한국광학회지
    • /
    • 제35권5호
    • /
    • pp.199-209
    • /
    • 2024
  • 적응광학(adaptive optics) 시스템의 성능 예측은 설계 및 분석에 매우 중요한 요소이다. 적응광학 성능 예측은 몇 가지 가정과 스케일링 법칙을 기반으로 한 초기 성능 예측 방안이 주로 사용되며, 대기 난류 강도와 프로파일, 파면 센서 및 변형 거울 해상도에 따른 피팅(fitting) 에러, 파면 재구성 알고리즘을 통해 전파되는 파면 센서 노이즈, 제어 루프의 유한 대역폭으로 인한 서보 지연, 그리고 자연 상태의 별 및 레이저 가이드 별의 배열에 따른 아나이소플라나티즘(anisoplanatism) 등 다양한 매개변수와 오류 원인을 고려해야 한다. 하지만 가정에 기반한 초기 성능 예측 방안은 때때로 실제 성능과 동떨어진 결과를 낳을 수 있으므로, 전산 시뮬레이션과 테스트 베드에서 폐쇄 루프 테스트를 통한 평가가 함께 진행되어야 한다. 또한 폐쇄 루프 테스트를 위해서는 대기 모사기가 필요하며, 이는 대기 외란의 공간 및 시간적 특성을 충분히 모사할 수 있어야 한다. 본 논문은 이러한 대기 외란 모사의 이론적 배경과 함께 컴퓨터 시뮬레이션 및 광학 실험실 내에서의 구현 과정을 전반적으로 제시한다.

입력변수 및 학습사례 선정을 동시에 최적화하는 GA-MSVM 기반 주가지수 추세 예측 모형에 관한 연구 (A Study on the Prediction Model of Stock Price Index Trend based on GA-MSVM that Simultaneously Optimizes Feature and Instance Selection)

  • 이종식;안현철
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.147-168
    • /
    • 2017
  • 오래 전부터 학계에서는 정확한 주식 시장의 예측에 대한 많은 연구가 진행되어 왔고 현재에도 다양한 기법을 응용한 예측모형들이 연구되고 있다. 특히 최근에는 딥러닝(Deep-Learning)을 포함한 다양한 기계학습기법(Machine Learning Methods)을 이용해 주가지수를 예측하려는 많은 시도들이 진행되고 있다. 전통적인 주식투자거래의 분석기법으로는 기본적 분석과 기술적 분석방법이 사용되지만 보다 단기적인 거래예측이나 통계학적, 수리적 기법을 응용하기에는 기술적 분석 방법이 보다 유용한 측면이 있다. 이러한 기술적 지표들을 이용하여 진행된 대부분의 연구는 미래시장의 (보통은 다음 거래일) 주가 등락을 이진분류-상승 또는 하락-하여 주가를 예측하는 모형을 연구한 것이다. 하지만 이러한 이진분류로는 추세를 예측하여 매매시그널을 파악하거나, 포트폴리오 리밸런싱(Portfolio Rebalancing)의 신호로 삼기에는 적합치 않은 측면이 많은 것 또한 사실이다. 이에 본 연구에서는 기존의 주가지수 예측방법인 이진 분류 (binary classification) 방법에서 주가지수 추세를 (상승추세, 박스권, 하락추세) 다분류 (multiple classification) 체계로 확장하여 주가지수 추세를 예측하고자 한다. 이러한 다 분류 문제 해결을 위해 기존에 사용하던 통계적 방법인 다항로지스틱 회귀분석(Multinomial Logistic Regression Analysis, MLOGIT)이나 다중판별분석(Multiple Discriminant Analysis, MDA) 또는 인공신경망(Artificial Neural Networks, ANN)과 같은 기법보다는 예측성과의 우수성이 입증된 다분류 Support Vector Machines(Multiclass SVM, MSVM)을 사용하고, 이 모델의 성능을 향상시키기 위한 래퍼(wrapper)로서 유전자 알고리즘(Genetic Algorithm)을 이용한 최적화 모델을 제안한다. 특히 GA-MSVM으로 명명된 본 연구의 제안 모형에서는 MSVM의 커널함수 매개변수, 그리고 최적의 입력변수 선택(feature selection) 뿐만이 아니라 학습사례 선택(instance selection)까지 최적화하여 모델의 성능을 극대화 하도록 설계하였다. 제안 모형의 성능을 검증하기 위해 국내주식시장의 실제 데이터를 적용해본 결과 ANN이나 CBR, MLOGIT, MDA와 같은 기존 데이터마이닝 기법들이나 인공지능 알고리즘은 물론 현재까지 가장 우수한 예측 성과를 나타내는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안 모형이 보다 우수한 예측성과를 보임을 확인할 수 있었다. 특히 주가지수 추세 예측에 있어서 학습사례의 선택이 매우 중요한 역할을 하는 것으로 확인 되었으며, 모델의 성능의 개선효과에 다른 요인보다 중요한 요소임을 확인할 수 있었다.