DOI QR코드

DOI QR Code

적응광학에서의 대기 외란 모사: 이론에서 실제 적용까지

Atmospheric Disturbance Simulation in Adaptive Optics: from Theory to Practice

  • 이준호 (공주대학교 광공학과) ;
  • 박지현 (공주대학교 광공학과) ;
  • 주지용 (공주대학교 광공학과) ;
  • 한석기 (공주대학교 광공학과) ;
  • 정용석 (한화시스템) ;
  • 김영수 (한화시스템)
  • Jun Ho Lee (Deptartment of Optical Engineering, Kongju National University) ;
  • Ji Hyun Pak (Deptartment of Optical Engineering, Kongju National University) ;
  • Ji Yong Joo (Deptartment of Optical Engineering, Kongju National University) ;
  • Seok Gi Han (Deptartment of Optical Engineering, Kongju National University) ;
  • Yongsuk Jung (Hanwha Systems) ;
  • Youngsoo Kim (Hanwha Systems)
  • 투고 : 2024.08.07
  • 심사 : 2024.09.04
  • 발행 : 2024.10.25

초록

적응광학(adaptive optics) 시스템의 성능 예측은 설계 및 분석에 매우 중요한 요소이다. 적응광학 성능 예측은 몇 가지 가정과 스케일링 법칙을 기반으로 한 초기 성능 예측 방안이 주로 사용되며, 대기 난류 강도와 프로파일, 파면 센서 및 변형 거울 해상도에 따른 피팅(fitting) 에러, 파면 재구성 알고리즘을 통해 전파되는 파면 센서 노이즈, 제어 루프의 유한 대역폭으로 인한 서보 지연, 그리고 자연 상태의 별 및 레이저 가이드 별의 배열에 따른 아나이소플라나티즘(anisoplanatism) 등 다양한 매개변수와 오류 원인을 고려해야 한다. 하지만 가정에 기반한 초기 성능 예측 방안은 때때로 실제 성능과 동떨어진 결과를 낳을 수 있으므로, 전산 시뮬레이션과 테스트 베드에서 폐쇄 루프 테스트를 통한 평가가 함께 진행되어야 한다. 또한 폐쇄 루프 테스트를 위해서는 대기 모사기가 필요하며, 이는 대기 외란의 공간 및 시간적 특성을 충분히 모사할 수 있어야 한다. 본 논문은 이러한 대기 외란 모사의 이론적 배경과 함께 컴퓨터 시뮬레이션 및 광학 실험실 내에서의 구현 과정을 전반적으로 제시한다.

Predicting the performance of adaptive optics systems is a crucial step in their design and analysis. First-order prediction methods, based primarily on several assumptions and scaling laws, are commonly used. These methods must account for various parameters and error sources, such as the intensity and profile of atmospheric turbulence, fitting errors based on the resolution of the wavefront sensor and deformable mirror, wavefront-sensor noise propagated through the wavefront-reconstruction algorithm, servo lag due to the finite bandwidth of the control loop, and anisoplanatism caused by the arrangement of natural and laser guide stars. However, since first-order performance-prediction methods based on certain assumptions can sometimes yield results that deviate from real-world performance, evaluation through computational simulations and closed-loop tests on a testbed is necessary. Additionally, an atmospheric simulator is required for closed-loop testing, which must adequately simulate the spatial and temporal characteristics of atmospheric disturbances. This paper aims to present an overview of the theory of atmospheric disturbance simulators, as well as their implementation in computational simulation and hardware.

키워드

과제정보

이 논문은 2024년도 한화시스템(주)의 재원을 지원받아 수행된 연구임.

참고문헌

  1. J. H. Lee, S. E. Lee, and Y. J. Kong, "Performance prediction of a laser-guide star adaptive optics system for a 1.6 m telescope," Curr. Opt. Photon. 2, 269-279 (2018).
  2. B. W. Frazier, M. Smith, and R. K. Tyson, "Performance of a compact adaptive-optics system," Appl. Opt. 43, 4281-4287 (2004).
  3. B. L. Ellerbroek, "First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes," J. Opt. Soc. Am. A 11, 783-805 (1994).
  4. J. M. Beckers, "Adaptive optics for astronomy: Principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
  5. R. K. Tyson, "Adaptive optics system performance approximations for atmospheric turbulence correction," Opt. Eng. 29, 1165-1173 (1990).
  6. M. Puga, R. Lopez, D. King, and A. Oscoz, "An atmospheric turbulence and telescope simulator for the development of AOLI," Proc. SPIE 9147, 91477V (2014).
  7. H.-G. Oh, P. Kang, J. Lee, H.-G. Rhee, Y.-S. Ghim, and J. H. Lee, "Fabrication of phase plate to simulate turbulence effects on an optical imaging system in strong atmospheric conditions," Curr. Opt. Photon. 8, 259-269 (2024).
  8. J. Y. Joo, S. G. Han, J. H. Lee, H.-G. Rhee, J. Huh, K. Lee, and S. Y. Park, "Development and characterization of an atmospheric turbulence simulator using two rotating phase plates," Curr. Opt. Photon. 6, 445-452 (2022).
  9. J. H. Lee, S. Shin, G. N. Park, H.-G. Rhee, and H. S. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photon. 1, 107-112 (2017).
  10. J. H. Lee, H. S. Gho, J. I. Lee, Y. C. Lee, U. C. Kang, J. W. Kim, Y. I. Cho, S. J. Kim, K. M. Lee, B. T. Choi, and H. J. Cheon, "A 37Ch visible adaptive optics system for wavefront compensation," J. Korean Phys. Soc. 49, 139-144 (2006).
  11. L. Hu, L. Xuan, Z. Cao, Q. Mu, D. Li, and Y. Liu, "A liquid crystal atmospheric turbulence simulator," Opt. Express 14, 11911-11918 (2006).
  12. S. Thomas, "A simple turbulence simulator for adaptive optics," Proc. SPIE 5490, 766-773 (2004).
  13. T. S. Taylor and D. A. Gregory, "Laboratory simulation of atmospheric turbulence-induced optical wavefront distortion," Opt. Laser Technol. 34, 665-669 (2002).
  14. M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. Jimenez, "Setting up a liquid crystal phase screen to simulate atmospheric turbulence," Proc. SPIE 4124, 89-97 (2000).
  15. A. J. Wild, R. W. Hobbs, and L. Frenje, "Modelling complex media: An introduction to the phase-screen method," Phys. Earth Planet. Inter. 120, 219-225 (2000).
  16. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, USA, 1996).
  17. S. Yoon, W. Moon, and H. Kim, "Number of phase screens required for simulation of a high-energy laser beam's propagation experiencing atmospheric turbulence and thermal blooming," Korean J. Opt. Photon. 35, 49-60 (2024).
  18. P. Jia, D. Cai, D. Wang, and A. Basden, "Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer," Mon. Not. R. Astron. Soc. 447, 3467-3474 (2015).
  19. V. I. Tatarski, Teopua OnyKTyaumoHHHx finnenun IIpm Pacnpocrpanenuu Bonu B Typ6yneuTHok Atuocgep (McGraw-Hill, USA, 1961). (Transl.: in R. A. Silverman, Ed., Wave Propagation in a Turbulent Medium, Dover Publications, USA, 1967).
  20. J. H. Pak, J. Y. Joo, J. H. Lee, J. L. Kim, S. H. Cho, K. S. Park, and E. S. Son, "Evaluating laser beam parameters for ground-to-space propagation through atmospheric turbulence at the Geochang SLR Observatory," Curr. Opt. Photon. 8, 382-390 (2024).
  21. A. Ziad, M. Schock, G. A. Chanan, M. Troy, R. Dekany, B. F. Lane, J. Borgnino, and F. Martin, "Comparison of measurements of the outer scale of turbulence by three different techniques," Appl. Opt. 43, 2316-2324 (2004).
  22. R. Wilson, "Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: A review," Annal. Geophys. 22, 3869-3887 (2004).
  23. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Opt. Soc. Am. 56, 1372-1379 (1996).
  24. C. M. Harding, R. A. Johnston, and R. G. Lane, "Fast simulation of a Kolmogorov phase screen," Appl. Opt. 38, 2161-2170 (1999).
  25. R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992).
  26. L. Jolissaint, "Optical turbulence generators for testing astronomical adaptive optics systems: A review and designer guide," Publ. Astron. Soc. Pac. 118, 1205-1224 (2006).
  27. O. Keshin, L. Laurent, and C. Bradley, "Hot-air optical turbulence generator for the testing of adaptive optics systems: Principles and characterization," Appl. Opt. 45, 4888-4897 (2006).
  28. H. Gamo and A. K. Majumdar, "Atmospheric turbulence chamber for optical transmission experiment: Characterization by thermal method," Appl. Opt. 17, 3755-3762 (1978).
  29. N. H. Farwell and O. Korotkova, "Multiple phase-screen simulation of oceanic beam propagation," Proc. SPIE 9224, 922416 (2014).