• Title/Summary/Keyword: 안테나 급전 구조

Search Result 448, Processing Time 0.021 seconds

A Study on Design Method of Band Rejection for Broadband Series-fed Dipole Pair Antenna (광대역 직렬 급전 다이폴 쌍 안테나의 대역 저지 설계 방법 연구)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the band rejection characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

  • PDF

Series-Fed Dipole Pair Antenna with WLAN Band Rejection Characteristic (WLAN 대역 저지 특성을 가지는 직렬 급전 다이폴 쌍 안테나)

  • Yeo, Junho;Hong, Jae Pyo;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1982-1987
    • /
    • 2013
  • In this paper, a design method to obtain a band rejection characteristic in the 2.4-2.484 GHz WLAN band is studied for a series-fed dipole pair (SDP) antenna operating in the band of 1.7-2.7 GHz for mobile communication base station applications. The band rejection characteristic is achieved by inserting U-shaped slots on the coplanar strip line connecting the two dipole elements of the SDP antenna. The effects of the location and dimension of the slots on the rejection band characteristics are examined. The optimized SDP antenna with WLAN band rejection is fabricated on an FR4 substrate and the experimental results show that the antenna has a desired band rejection performance with a frequency band of 1.65-2.78 GHz (51.0%) for a VSWR < 2, and a rejection band of 2.39-2.54 GHz.

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.

Design of Wideband Bow-Tie Antenna with Folded-Slit Band-Notch Structure (폴디드 슬릿 대역저지 구조를 적용한 광대역 보우타이 안테나 설계)

  • Nam, Hyun-Soo;Woo, Dong Sik;Kim, Sung-Kyun;Kim, In-Bok;Choi, Hyun-Chul;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.886-894
    • /
    • 2014
  • A wideband bow-tie antenna fed by wideband microstrip-coplanar stripline(CPS) balun and band notch structures that can be applied to bow-tie antenna are proposed in this paper. In order to increase bandwidth, bow-tie radiators are reshaped so that the surface current flows continuously, and wideband impedance matching is achieved by adjusting strip width and spacing of CPS feeding line. The VSWR is measured as 2:1 over the wide frequency range of 2.3~12 GHz. The fabricated antenna size is $60mm{\times}60mm$. In order to achieve the band-notch function at WLAN(5.8 GHz), ${\lambda}/4$ folded-slits located ${\lambda}/4$ away from feeding point are utilized. To minimize the slit size, folded-slit type is adopted. The measured VSWR is 7:1 and gain attenuation is 14 dB at 5.8 GHz.

X-band Microstrip 4×4 Broadband Circularly Polarized Array Antenna Using Sequential Rotation Divider Structure (시퀀셜 로테이션 분배기 구조를 이용한 X-band 마이크로스트립 4×4 광대역 원형 편파 배열 안테나)

  • Kim, Jung-Han;Kim, Joong-Kwan;Kim, Yong-Jin;Lee, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.158-165
    • /
    • 2007
  • In this paper, the circularly polarized $4{\times}4$ array antenna is proposed for the X-band. A single antenna consists of square patch and unequal cross-aperture coupled feeding. The RHCP(Right Handed Circularly Polarization) is generated by unequal cross-aperture coupled feeding. By reducing space among elements of way antenna from 0.8 ${\lambda}_0$ to 0.45 ${\lambda}_0$, the mounting area of array antenna is miniaturized. The $2{\times}2$ array antenna is designed using sequential rotation feeding network. The good level of gain, axial ratio, and impedance bandwidth are achieved. The $4{\times}4$ array antenna is extended by ${\lambda}/4$ transformer and T-junction power divider. The simulated maximum radiation gain is 15.09 dBi at 10 GHz. The simulated 3 dB Axial Ratio bandwidth is from 9.05 to 10.4 GHz(13.5%). Also the measured impedance bandwidth($VSWR{\leq}2$) of manufactured $4{\times}4$ array antenna is from 8.45 to 11.84 GHz(33.9%). The measured maximum radiation gain is 11.10 dBi at 10 GHz. The measured 3 dB Axial Ratio bandwidth is from 9.42 to 10.47 GHz(10.5%).

On the Design of Multi-layered Polygonal Helix Antennas (다각 다단 구조 헬릭스 안테나 설계)

  • Choo Jae-Yul;Choo Ho-Sung;Park Ik-Mo;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.249-258
    • /
    • 2006
  • In this letter, we propose a novel printed helix antenna for RFID reader in UHF band. The printed strip line of the antenna is first wound up outside a polygonal shaped layer and then the winding continues on an inner layer to control the overall gain and the radiation pattern. In addition, the winding pitch angles on each layer have either negative or positive values resulting in the broad CP bandwidth. The detail structure of the antenna was optimized using Pareto genetic algorithm(GA), so as to obtain excellent performances for RFID reader antennas. The optimized two-layered polygonal helix was fabricated on the cardboard of a flexible substrate and the performances were measured and compared with the simulations. The fabricated antenna was made up of copper tape which can adhere to a flexible cardboard and had 21.4 % matching bandwidth, 31.9 % CP bandwidth, readable range of $5.5m^2$ with kr=3.2. Also based on the current distribution of the strip line of the antenna and sensitivity of the antenna bents points, we confirmed that the antenna has the quarter-wave transformer near the feed for the broad matching bandwidth and radiates the traveling wave for the broad CP bandwidth using the bent strip line.

Modified Monopole Antenna for Multi resonance Wideband (다중 공진 광대역 수정된 모노폴안테나)

  • Cho, Tea-Il;Bum, Byung-Gyun;Lim, Seung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.53-57
    • /
    • 2008
  • This paper designed and fabricated the printed dual monopole antenna with CPW feeder for PCS and UWB(Ultra-Wide Band) band. In this paper, modified dual monopole antenna is proposed transform conventional monopole antenna to get dual band frequency. The dual monopole antennas have dual band, broad bandwidth and omni-directional radiation patterns, as it is the conventional monopole antenna. As one monopole operated a stub to match feed line with antenna, we are obtained easy an ideal impedance matching. It is increased band width of impedance. The antenna bandwidth is about 1350MHz (1.69~2.04[GHz]z]) at 1st resonance frequency, 2,670MHz (4.33~6[GHz]) at 2nd, resonance frequency, and, 3,980MHz (6.1~10.08[GHz]) at 3th resonance frequency on VSWR$$\leq_-$$2, and then we can be got not only 1.75~1.87 [GHz] PCS band but also, UWB band.

  • PDF

Design of a CP Spiral RFID Reader Antenna in UHF Band (UHF 대역 CP 스파이럴 RFID 리더 안테나 설계)

  • Lee, Chu-Yong;Choo, Ho-Sung;Park, Ik-Mo;Han, Wone-Keun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.562-571
    • /
    • 2008
  • In this paper, we propose a novel structure of a spiral antenna with a CP characteristic for RFID reader in UHF band. Since the proposed antenna can be built by printing on a FR-4 substrate, it is appropriate for low-cost mass-production. The antenna is designed to operate in UHF band of $860{\sim}960$ MHz. The CP bandwidth is Increased enough to cover an overall UHF RFID band by using a spiral structure for the antenna arm. The matching bandwidth is broadened by using a quarter-wave transformer between the fred and the antenna body. The proposed antenna has advantages of its easy gain and pattern control with a small antenna size. The measured antenna performance shows the matching bandwidth of 13%, the CP bandwidth of 23%, and the gain of 6.5 dBi. This verifies that the proposed antenna is appropriate for RFID antennas in UHF band.

Lifejcket-Integrated Antenna for Search and Rescue System (탐색 및 구조 시스템용 구명조끼 내장형 안테나)

  • Lim, Ji-Hun;Yang, Gyu-Sik;Jung, Sung-Hun;Park, Dong-Kook
    • Journal of Navigation and Port Research
    • /
    • v.38 no.4
    • /
    • pp.367-371
    • /
    • 2014
  • When the crew or passengers fall into the water due to marine accident of vessel, it is very important to rescue them quickly. In the case of marine accidents, most people in distress have been wearing a lifejacket, so if the GPS and Cospas-Sarsat communication module will be integrated within the lifejacket, it is easy to rescue them. In this paper, development of the dual band lifejacket-integrated antenna for GPS and Cospas-Sarsat communication is discussed. The antenna with the FR-4 substrate of 0.2mm thickness for flexibility was designed that it can be fitted close to the shoulder of the life jacket and operate at 1.575GHz and 406MHz. The GPS communication antenna was implemented with a ring-slot antenna having a circular polarized characteristic and a meander type linear polarized antenna is used as Cospas-Sarsat communication. The two antennas are fed by a single microstrip line and an open stub is used to minimize the mutual interference between the two antennas. The performance of the fabricated antenna attached to the life vest is confirmed by the measurement of the return loss at GPS and Cospas-Sarsat frequency bands.

Miniaturization of Planar Monopole Antenna with Parabolic Edge by Scaling Method (스케일링 기법을 이용한 포물선 엣지 형태의 평면형 모노폴 안테나의 소형화)

  • Chang, Tae-Soon;Kang, Sang-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • In this paper, minimizing of a parabolic edge planar monopole antenna by scaling method is presented. With the aid of a matching step and discontinuous CPW, the antenna easily adjusts the impedance matching. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The dimensions of the antenna are $26mm{\times}31mm{\times}1.6mm$. A return loss value of more than 10dB was found in the 2.37GHz to 10.52GHz (8.15GHz) range of the antenna fed by the discontinuous CPW. The radiation pattern is about the same as that of the dipole antenna at all frequencies. Configuration elements of the antenna except feed part were reduced into the same rate. So, the size of the antenna was decreased and a broadband property was maintained. Therefore, the self-complementary characteristic of the antenna was confirmed. While satisfying the UWB band, having the smallest size in the antenna miniaturized by scaling;when scale was 0.6. The dimensions of the antenna are $15.6mm{\times}18.6mm{\times}1.6mm$. The return loss was more than 10 dB of the measured result in the range of 3.07GHz to 12.59GHz (9.52GHz).