• Title/Summary/Keyword: 안테나 급전 구조

Search Result 447, Processing Time 0.027 seconds

Design of a Tapered Slot Array Antenna with Uniplanar Feed (유니플래너 급전구조를 갖는 테이퍼드 슬롯 안테나의 설계)

  • Kim, Hye-Ri;Park, Noh-Joon;Kang, Young-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.386-391
    • /
    • 2006
  • In this paper, a design of V-type Linearly Tapered Slot Antenna(V-LTSA) with uniplanar microstrip-to-coplanar stripline(CPS) transitions is presented. The effect of reducing and increasing with taper width G, teper length L and opening angle are also considered at 5.8 GHz. In the result of a simulation by using CST-MWS, the return loss characteristic came very wide band about 4.3GHz, or 1.8 Octave. Proposed V-LTSA design schemes are expected to be a good antenna for microwave and millimeter-wave communcations.

Analysis of Slot Coupled Stacked Microstrip Antennas (슬롯결합 적층 마이크로스트립 안테나 특성 해석)

  • 문호원;이정욱;윤영중;박한규
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.37-47
    • /
    • 1995
  • In this paper, the slot coupled stacked microstrip antenna, which has wide bandwidth characteristics because of the double tuning effects from the interactions between two patches and feeding slot and improves distortions of radiation patterns due to spurious radiation from feeder, is analyzed. For the analy- sis Green function in the spectrum domain and Galerkin method is applied with an accurate analysis mode for slot coupled feeding structure using the scattering analysis method. The basis functions are 3 EB modes for patches and 5 PWS modes for feeder. The slot coupled stacked microstrip antennas are designed and fabricated with the center frequency of 11.5 Ghz and 12.0 GHz. The experimental results show the wide bandwidth characteristics of 1.9 ~ 2.2 GHz and agree well with the simulation results which have 15~20% bandwidth.

  • PDF

Design of Microstrip Patch Array Antenna for ISM Band (ISM대역용 마이크로스트립 패치 배열 안테나 설계)

  • 이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.119-124
    • /
    • 2004
  • In this paper, we are designed and fabricated circular polarization microstrip patch antenna of 5[GH]z bandwidth for the wireless LAN and the ISM. We are proposed new structure that removed the section which intersected at a right angle and were composed to four separated slots. The antenna of proposed structure could solve parasitic elements from intersected in a right angle and weak coupling efficiency from asymmetry between feed line and a slot. The proposed cross slots antenna is easily impedance matching and increased impedance bandwidth. Also this is increased efficiency and a bandwidth of antenna and reduce back lobe of radiation pattern. We designed 2${\times}$2 array antenna of 5[GHz] band. It took impedance bandwidth 280[MHz](VSWR < 1.5) and gam 12.5[dBi]

The Axial-displaced gregorian antenna design using Ray-tracing Method (Ray-tracing 기법을 이용한 축변위 그레고리안 안테나 설계)

  • Kim, Chun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.515-521
    • /
    • 2014
  • In this paper, we designed axis-displaced Gregorian antenna by using Ray-tracing method. This antenna improves gain, VSWR by rotating the axis of the sub-reflector to get rid of E-field wave returned from sub-reflector to feed horn. Therefore it reduce the sub-reflector size and the volume of antenna. This method is used to track the propagation path for radiation pattern of feed horn from feed horn to sub-reflector, main-reflector and air. We get E-field distribution of this antenna aperture and calculate antenna radiation pattern and optimize the antenna performance. The Ray-tracing Method was verified because the gain, radiation patterns, side lobe level, beam width and return loss of the designed antenna are very similar to CST simulation result and a measured result of the fabricated antenna.

Design of Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.71-72
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "${\Gamma}$"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, and low cross-polarization level of < -20 dB.

  • PDF

Development of Single Feed Antenna for Integrated Public Network and 5G Network Frequency Dual-band Cover (통합 공공망과 5G 주파수 이중대역 커버용 단일 급전 안테나 개발)

  • Hong, Ji-Hun;Choi, Yoon-Seon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.233-240
    • /
    • 2019
  • In this paper, due to the development of 5G communication technology, an antenna capable of covering both LTE and 5G bands is currently needed. In addition, we designed and manufactured a single feed antenna for the integrated public network (LTE) and 5G frequency dual band cover to satisfy the frequency bandwidth of more than 10% in each band. The antenna designed by adopting the dipole of the basic dipole antenna in a planar structure is a form in which the radiating element is vertically extended at all of the 700 MHz antennas and folded into a 'ㄷ' shape. In addition, the radiating element of the 700MHz band serves as a reflector of the 3.5GHz band radiating element. As a result, the 700 MHz band -10 dB bandwidth 104 MHz(14.8%) and 3.5 GHz band -10 dB bandwidth 660 MHz(18.8%) were obtained and the radiation pattern characteristic resulted in gains of 8.46 dBi, beam width E-plane 55°, H-plane 81° and 3.5 GHz bands 6.14 dBi, beamwidth E-plane 79°, H-Plane 49°.

Bandwidth Improvement of a Series-fed Two Dipole Array Antenna (직렬 급전된 두 개의 다이폴 배열 안테나의 대역폭 향상)

  • Yeo, Jun-Ho;Lee, Jong-Ig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5214-5218
    • /
    • 2011
  • In this paper, bandwidth improvement of a series-fed two dipole array(STDA) antenna applicable for mobile communication base station antennas is studied. The proposed STDA antenna consists of two strip dipole antennas with different lengths which are connected directly trough a coplanar stripline(CPS). By adjusting the spacing between the two dipoles and the length of the second dipole, the bandwidth of the STDA can be enhanced. In addition, an integrated balun composed of a short-circuited microstrip line and a slot line is utilized to minimize the area required for a feeding part, and a broadband impedance matching is obtained by adjusting the feeding point. Based on the proposed antenna structure, an STDA antenna covering the frequency band ranging from 1.75 GHz to 2.7 GHz, which includes almost all the existing mobile communication frequency bands, with more than 5 dBi gain is designed and fabricated on an FR4 substrate with dielectric constant of 4.4 and thickness of 1.6mm, and experimentally tested. The fabricated antenna shows impedance bandwidth of 49%(1.7-2.8 GHz) for VSWR<2, a gain higher than 5.5 dBi, and a front-back ratio better than 12 dB.

Directivity Gain Improvement Method for UWB Coplanar Patch Antenna (UWB 평면 패치안테나의 지향성이득의 향상 방법)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.63-70
    • /
    • 2012
  • This paper discussed on the directive gain improvement method of the U-type ultra wide-band(UWB) planar patch antenna model with CPW feeding. For directive gain improvement, the U-type printed patch antenna model with CPW feeding is reconstructed as a microstrip structure by adding a reflection plane with aperture slot. The reflection coefficient of the reconstructed antenna is less than -6.5 dB(VSWR < 3.3) to the characteristic impedance of $50.08{\Omega}$ and showed the directive radiation patterns with the directive gain of 7.5 dBi ~ 10.1 dBi, the front-back ratio of 17.8 dB ~ 28.7 dB and the range of -3dB radiation angle over ${\pm}30^{\circ}$ to the main beam direction of ${\theta}=0^{\circ}$.

A Design of Printed square Loop Antenna for Omni-diractional Radiation Patterns (전방향 복사페턴의 인쇄형 사각 루-프안테나 설계)

  • 이현진;차상진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.93-98
    • /
    • 2003
  • In this paper, we designed a printed square loop antenna for operating of PCS and IMT2000 band. The proposed antenna has omni-directional radiation patterns with broad bandwidth, similar to the conventional antenna, to easy feed on composing single planar. We obtain an ideal impedance matching and increase bandwidth. An antenna bandwidth is about 150MHz(1.74∼l.89〔GHz〕) at 1$^{st}$ resonance frequency and 290MHz(1.95∼2.24GHz) at 2$^{nd}$ resonance frequency on VSWR(equation omitted)1.5, and then we can obtain not only 1.73∼l.87 〔GHz〕 PCS band but also 1.92∼2.17 (GHz) IMT2000 band. band.

Design and Fabrication of Aperture-Coupled Microstrip Patch Antenna for WLL Repeater Using Space Diversity (공간 다이버시티를 이용한 WLL 중계기용 적층형 평판 안테나 설계 및 제작)

  • 한봉희;노광현;박노준;강영진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.388-396
    • /
    • 2002
  • In this paper, An aperture-coupled microstrip patch antenna operating at WLL frequency range(Rx : 2.3∼2.33Ghz, Tx : 2.37 ∼2.4Ghz) for WLL repeater is designed and fabricated. FR-4 epoxy substrate with 4.7 relative permittivity is inserted between feed-line and patch plane. Aperture-coupled structure is employed for consideration of bandwidth improvement and gain\`s characteristics. Air gap is arranged at each layer for bandwidth extension and radome is used as a protector in the upper patch. In this paper, both 1 port and 2 port are designed as 1$\times$2 array antenna which uses T-junction and λ$\_$g//4 transformer. Here, 1 port is used as transmitting/receiving antenna and 2 port is used as receiving antenna. Functionally independent two antennas using space diversity arrange slots between two antennas in order to be placed at the same place. As a result, we obtained a excellent isolation below -40dB and return loss is reduced by means of slots arrangement between patch and antenna.