• Title/Summary/Keyword: 안정성한계

Search Result 1,075, Processing Time 0.024 seconds

Preparation of RGO coated TiO2 for improved electrical conductivity (전기 전도성 향상을 위한 RGO가 코팅된 TiO2 제조)

  • Kim, Su-Deok;Choe, Jin-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.192.1-192.1
    • /
    • 2016
  • 타이타늄은 밸브 메탈의 일종으로, 다양한 전해질 조건에서 양극산화되어 이산화 타이타늄($TiO_2$)을 형성한다. 이산화 타이타늄은 저렴한 가격, 풍부함, 무독성, 높은 안정성 등 다양한 장점을 지닌다. 또한 리튬 이온의 삽입/탈리 이후에도 구조적인 변화가 적은 성질과 비교적 높은 방전 전압(1.0-2.5 V vs Li/Li+)으로 인해 그래파이트를 대체할 리튬이온 전지의 전극재료로써 연구되어 왔다. 하지만 낮은 이온 및 전기 전도도로 인해 다양한 분야에서의 활용에 한계가 있어왔다. 이러한 한계 극복을 위해, 이산화 타이타늄에 전도성이 높은 탄소 계열의 물질을 코팅하는 방법이 고려되었다. 그래핀 산화물은 강한 산을 이용하여 그래파이트를 산화시킨 물질로, 많은 산소작용기를 함유하고 있어 탄소 고유의 전기전도성을 갖지 못한다. 환원 그래핀 산화물(reduced graphene oxide)는 빛, 열, 화학 작용울 통해 그래핀 옥사이드를 환원시켜 산소작용기를 없앤 물질로, 환원과정에서 전기전도성을 회복한다. 이에 본 연구에서는 이산화 타이타늄에 환원 그래핀 산화물(reduced graphene oxide)를 코팅하여 전기 전도도를 향상시키고. 이에 대한 활용 분야를 연구하고자 하였다.

  • PDF

GM performance of the characteristics study by ship type for the stability support platform of the electronic inclinometer (전자식 경사계의 안정성 지원 플랫폼을 위한 선종별 GM 성능 특성 연구)

  • Kim, Mi-Joung;Jeon, Sung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1920-1926
    • /
    • 2021
  • The electronic inclinometer can measure and print various output data related to the ship's heel, rolling cycle, and amplitude. The electronic inclinometer that can support ship stability judgment is equipped with a platform that supports stability for recovery performance, so it is possible to provide data even for small ships that lack ship stability judgment information. GM is an important factor in determining stability, and each type of ship has different GM scope. The purpose of this paper is to analyze GM according to the type of target ship and to review for a stable GM proposal. In addition, it is expected that GM data for each ship type will be embedded in the electronic inclinometer for ship that meets international standards, and will be used as data for securing and reviewing GM for strengthening ship safety

Experimental study on new artificial reef for hydraulic stability (해조류 이식형 인공어초의 수리적 안정성에 관한 실험적 검토)

  • Shin, Bum-Shick;Chung, Hyun-Joon;Kim, Kyu-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.555-560
    • /
    • 2014
  • In Korea, quantitative growth rate of artificial reef construction is supposed to reach the peak point therefore, new approach is needed to the point of artificial reefs business. Functional reefs like shellfish reefs, recreational reefs, seaweed reefs as well as fish reefs are beneficial alternatives. This study conducted hydraulic testing to assess the stability of new types of artificial reefs (ARs) constructed to promote the growth of shellfish and seaweed. The results of this study revealed that some dimensionless design parameters affected the stability of new types of artificial reef under various wave and water depth conditions in the fixed bed condition. The findings also highlight the importance of hydraulic experiments in solving problems that have emerged in the design and construction of artificial reefs.

Probabilistic Stability and Sensitivity Analysis for a Failed Rock Slope using a Monte Carlo Simulation (몬테카를로시뮬레이션 기법을 이용한 붕괴 암반사면의 확률론적 안정해석 및 민감도 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.437-447
    • /
    • 2010
  • A probabilistic analysis of slope stability is an appropriate solution in dealing with uncertainty in problems related to engineering geology. In this study, a Monte Carlo simulation was performed to evaluate the performance function that is Barton's equation. A large number of randomly generated values were obtained for random variables, and the performance function was calculated repeatedly using randomly generated values. A previous study provided information of slope geometry and the random characteristics of random variables such as JRC and JCS. The present approach was adopted to analyze two failed slopes. The probabilities of failure were evaluated for each slope, and sensitivity analysis was performed to assess the influence of each random variable on the probability of failure. The analysis results were then compared with the results of a deterministic analysis, indicating that the probabilistic analysis yielded reliable results.

Applications of the Copper Slags as Ground Improvement Material (지반개량재로써 동제련슬래그의 활용에 관한 연구)

  • Chun, Byung-Sik;Jung, Hun-Chul;Cho, Han-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 2002
  • This study is about the applicability of copper slag as the ground improvement material. By the geo-technical characteristics of the copper slag and by the effect of consolidation and under drainage condition, it is proved that the copper slag can be used for ground improvement material as substitution for sand. As a result of laboratory tests, it was shown that the permeability of the copper slag was similar to that of sands under the vertical drainage condition. In addition, the copper slag showed higher critical hydraulic gradient than that of sand under up-ward vertical flow state. The copper slag has potential safety against piping and it has internal stability of particles. The conclusion is that the copper slag is suitable for drainage and filter material.

  • PDF

Hydraulic model test for corrugated artificial reef stability (수리실험을 통한 요철형 인공어초 안정성 검토)

  • Baek, Seung Hwa;Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5327-5332
    • /
    • 2014
  • In Korea, the quantitative growth rate of artificial reef construction is supposed to reach the peak point. Therefore, new approach is needed to the point of artificial reefs business. Functional reefs, such as shellfish reefs, recreational reefs, seaweed reefs, and fish reefs, are beneficial alternatives. This study conducted hydraulic testing to assess the stability of corrugated artificial reefs (ARs) that were constructed to promote the growth of shellfish and seaweed. The results of this study showed that some dimensionless design parameters affected the stability of corrugated artificial reefs under a range of wave and water depth conditions in a fixed bed condition. The findings also highlight the importance of hydraulic experiments in solving the problems that have emerged in the design and construction of artificial reefs.

A Study on the Aerodynamic Stability of Long Span Pedestrian Bridges (장경간 보도교의 내풍안정성에 관한 연구)

  • Lee, Seungho;Jeong, Houigab;Kwon, Soon-Duck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.287-296
    • /
    • 2019
  • In recent years, a number of long span cable-stayed pedestrian bridges have been constructed to the advantages of relatively low cost construction and the many tourists visiting. However, most of the pedestrian bridges are located in parks or sightseeing areas, so they are conducted without proper review and design process. It is necessary to review the aerodynamic stability of the long span cable-stayed pedestrian bridge, and it should be designed in detail from various points of view rather than the road bridge. In this study, we investigated the wind characteristics of the cable-stayed pedestrian bridge, and the empirical equations for the relationship between the main span length and the fundamental natural frequencies are presented for future use. In addition, the flutter wind speed limit of the flat plate deck pedestrian bridge calculated using the Selberg's equation is also presented. The final aerodynamic bridge section which satisfied the aerodynamic stability was found from open grating method. The proposed method can be used for long span cable-stayed pedestrian bridge in the future.

Global Stability of Geosynthetic Reinforced Segmental Retaining Walls in Tiered Configuration (계단식 블록식 보강토 옹벽의 전체 안전성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.9
    • /
    • pp.23-32
    • /
    • 2008
  • This paper presents the global stability of geosynthetic reinforced segmental retaining walls in tiered configuration. Four design cases of walls with different geometries and offset distances were analyzed based on the FHWA and NCMA design guidelines and the discrepancies between the different guidelines were identified. A series of global slope stability analyses were conducted using the limit-equilibrium analysis and the continuum mechanics based shear strength reduction method with the aim of identifying failure patterns and the associated factors of safety. The results indicated among other things that the FHWA design approach yields conservative results both in the external and internal stability calculations, i.e., lower factors of safety, than the NCMA design approach. It was also found that required reinforcement lengths are usually governed by the global slope stability requirement rather than the external stability calculations. Also shown is that the required reinforcement lengths for the upper tiers are much longer than those based on the current design guidelines.

Fragility Contour Method for the Seismic Performance Assessment of Generic Structures (지진 취약성 등고선을 이용한 내진성능 평가 방법)

  • Jeong, Seong-Hoon;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • Extensive computer simulations to account for the randomness in the process of seismic demand estimation have been a serious obstacle to the adoption of probabilistic performance assessments for the decision of applying seismic intervention schemes. In this study, a method for rapid fragility assessments based on a response database and the fragility contour method are presented. By the comparison of response contours in different formats, it is shown that representing maximum responses in ductility demand is better for the investigation of the effect of structural parameter changes on seismic demands than representations in absolute values. The presented fragility contour enables designers to practically investigate the probabilistic performance level of every possible retrofit option in a convenient manner using visualized data sets. This example demonstrates the extreme efficiency of the proposed approach in performing fragility assessments and successful application to the seismic retrofit strategies based on limit state probabilities.

New Stability Conditions for Positive Time-Varying Discrete Interval System with Interval Time-Varying Delay Time (구간 시변 지연시간을 갖는 양의 시변 이산 구간 시스템의 새로운 안정 조건)

  • Han, Hyung-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.501-507
    • /
    • 2014
  • A dynamic system is called positive if any trajectory of the system starting from non-negative initial states remains forever non-negative for non-negative controls. In this paper, new sufficient conditions for asymptotic stability of the interval positive time-varying linear discrete-time systems with time-varying delay in states are considered. The considered time-varying delay time has an interval-like bound which has minimum and maximum delay time. The proposed conditions are established by using a solution bound of the Lyapunov equation and they are expressed by simple inequalities which do not require any complex numerical algorithms. An example is given to illustrate that the new conditions are simple and effective in checking stability for interval positive time-varying discrete systems.