• Title/Summary/Keyword: 안정된 보행

Search Result 233, Processing Time 0.036 seconds

Gyration walking Simulation for Humanoid Robot ISHURO-II (휴머노이드 로봇 ISHURO-II의 회전보행 시뮬레이션)

  • Choi, Woo-Chang;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.317-318
    • /
    • 2007
  • 휴머노이드 로봇이 인간에게 필요한 다양한 서비스를 제공하기 위해서는 정해진 동작이 아닌 상황에 따른 다양한 동작이 요구된다. 특히 보행에 있어서는 회전각도 보폭 등이 상황에 따라 변경이 가능해야 한다. 이에 따라 로봇에게 필요한 다양한 보행 궤적을 생성하기 위해서는 보행궤적의 생성과 안정성 판별을 위한 ZMP(Zero Moment Point), COG(Center Of Gravity)등의 생성을 위한 시뮬레이터가 필요하게 된다. 본 논문에서는 성행 연구를 통해 개발된 시뮬레이터 프로그램의 단점을 분석하고 보완하여, 보폭 및 회전 각도가 자유로운 회전 보행의 생성이 가능한 시뮬레이터 프로그램을 구현하였다. 그리고 구현된 시뮬레이터 프로그램을 사용하여 생성된 궤적 파일을 동역학 해석 프로그램인 NASTRAN을 이용 시뮬레이터를 검증한다.

  • PDF

Structural design method of quadrupedal walking robot for overcoming non-flat terrain (비평탄 지형 극복을 위한 4족 보행 로봇의 구조 설계 방법)

  • Yu, Sang-jung;Lee, Geon;Han, Seong-Min;Pak, Myeong-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.875-877
    • /
    • 2022
  • 본 논문에서는 비평탄 지형에서 보행할 수 있는 탐사, 정찰 목적으로 설계된 12자유도 4족 보행 로봇의 구성과 주요사양을 설명하고 로봇 하드웨어의 설계 과정과 현실에서 로봇을 구동하기 전 시뮬레이션으로 로봇을 미리 구동시킨 실험결과 및 보행 안전성에 관련된 분석 결과등을 제시하고 실제로 로봇의 보행이 안정한지 확인하는 과정을 보여준다

Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle (보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석)

  • Hyeong, Joonho;Roh, Jongryun;Kim, Sayup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.991-996
    • /
    • 2017
  • Gait stability is partly characterized by an extended stance phase that comprises 60 of the gait % cycle. In this study, a gait pattern was employed for a crank drive system that allows for stable lower limb kinematics during stand-up cycling. A quick return mechanism was applied to the crank system to allow for a slow rotation of the crank during the stance phase and for a quick return during the swing phase. Design parameters for the quick return crank mechanism were defined, and kinematic simulations were performed to understand the behavior of the mechanism. To evaluate the design, an experimental instrument was fabricated, and the cycling motion was analyzed. The results indicated that this new drive system can stabilize the center of mass of the user. This study can contribute to the development of a stand-up bicycle that allows for more comfortable leg kinematics.

A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm (유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구)

  • Kong, Jung-Shik;Kim, Jin-Geol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.640-647
    • /
    • 2007
  • This paper presents a joint controller for a humanoid robot based on genetic algorithm. h humanoid robot has basically instability during walking because it isn't fixed on the ground. Moreover nonlinearities of the joints increase its instability. If one of them isn't satisfied, the robot may fall down at the ground during walking. To attack one of those problems, joint controller is proposed. It can perform tracking control preciously and reduce the effect of nonlinearities by gear, limitation of the input voltage, coulomb friction and so on. This controller is based on fuzzy-sliding mode controller (FSMC) and compensator and control gains are searched by a proposed genetic algorithm. It can reduce the effect by nonlinearities. Also, to improve the tracking performance, the proposed controller has motion controller. From the given controller, a humanoid robot can moved more preciously. Here, all the processes are investigated through simulations and it is verified experimentally in a real joint system for a humanoid robot.

Effects of Forest-Walking Exercise on Functional Fitness and Gait Pattern in the Elderly (산림 걷기 운동이 노인의 기능적 체력과 보행형태에 미치는 영향)

  • Choi, Jong-Hwan;Shin, Chang-Seob;Yeoun, Poung-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.503-509
    • /
    • 2014
  • The purpose of this study was to investigate the effect of Forest-walking exercise on gait pattern in the elderly. The subjects (n=37) were assigned to 2 groups: Forest-walking exercise (FWE) group (n=19, $66.34{\pm}4.31$ years old) and In-door treadmill-walking exercise (ITWE) group (n=18, $67.18{\pm}2.78$ years old). The subjects participated in FWE program or ITWE program (3 times/week, 80 min/day) for 12 weeks. The subjects were tested on functional fitness (strength, endurance, agility/balance, BMI) and gait pattern (cadence, velocity, and stability) at the beginning and the end of the 12-weeks program. For data analysis, mean and standard deviation scores were calculated, and independent t-test and repeated two-way ANOVA were used. The results of this study were as follow: First, FWE group was significantly more improved than ITWE group on functional fitness(lower-body muscular strength, lower-body flexibility, mobility, cardiorespiratory endurance) after 12-weeks exercise program. But both groups showed equally improvements on functional fitness (upper-body muscular strength, upper-body flexibility, BMI). Second, FWE group was significantly more improved than ITWE group on cadence, gait velocity, and gait stability after 12-weeks exercise program. Therefore, this study may suggest that Forest-walking exercise based on sensory-motor functional integration improves efficiently functional fitness and gait pattern in the elderly, and further becomes an effective exercise method that makes more dynamic life, and prevents from falling.

Comparison of Kinetic Variables and Muscle Activity of Ankle Joint During Walking in Subjects With and Without Diabetic Plantar Ulcers (보행 시 정상인과 당뇨병성 족부궤양 환자의 족관절 운동역학적 변수와 근활성도 비교)

  • Kwon, Oh-Yun;Choi, Kyu-Hwan
    • Physical Therapy Korea
    • /
    • v.8 no.4
    • /
    • pp.45-61
    • /
    • 2001
  • 본 연구는 보행주기 동안 정상인과 당뇨병성 족부궤양 환자의 족관절 운동역학적 변수와 족관절 근육들의 근활성도에 차이가 있는지 알아보기 위하여 실시하였다. 본 연구의 대상자는 당뇨병성 족부궤양이 있는 환자 9명(남자: 6명, 여자: 3명)과 성, 연령, 체중으로 짝짓기(matching)시킨 대조군 9명이었다. 3차원 동작분석기, 힘판, 표면 근전도를 이용하여, 보행주기 동안 족관절의 관절가동범위, 모멘트(moment), 일률(power), 그리고 내측가자미근, 전경골근, 비복근의 근수축 개시시간(onset time)과 종료시간(cessation time)을 측정하였다. 정상군과 비교하여 당뇨병성 족부궤양군의 보행속도는 느렸고, 입각기 기간이 길었으며, 족관절의 가동범위가 적었고, 족관절 최대 족저굴곡 모멘트와 일률이 정상군에서보다 유의하게 낮았다. 보행주기에서 당뇨병성 족부궤양군에서 내측 가자미근과 비복근의 근수축 개시시간은 유의하게 빨랐으며, 전경골근과 비복근의 근수축 종료시간은 유의하게 지연되었다. 당뇨병성 족부궤양 환자군의 족관절 근육에서 동시수축(co-contraction)이 증가되고, 보행속도가 느리며, 입각기 기간이 증가하였다. 이러한 보행특성의 차이는 족부 감각손실에 따른 보행의 안정성을 유지하기 위한 보행전략 때문으로 판단된다. 앞으로 이러한 비정상적인 보행특성이 당뇨병성 족부궤양에서 발생하는 비정상적인 족저부 압력분포과 족부궤양 발생과 어떤 관계가 있는지 알아보는 연구가 필요할 것이다.

  • PDF

Analysis of Gait Characteristics of Walking in Various Emotion Status (다양한 감정 상태에서의 보행 특징 분석)

  • Dang, Van Chien;Tran, Trung Tin;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.477-481
    • /
    • 2014
  • Human has various types of emotions which affect speculation, judgement, activity, and the like at the moment. Specifically, walking is also affected by emotions, because one's emotion status can be easily inferred by his or her walking style. The present research on biped walking with humanoid robots is mainly focused on stable walking irrespective of ground condition. For effective human-robot interaction, however, walking pattern needs to be changed depending on the emotion status of the robot. This paper provides analysis and comparison of gait experiment data for the men and women in four representative emotion states, i.e., joy, sorrow, ease, and anger, which was acquired by a gait analysis system. The data and analysis results provided in this paper will be referenced to emotional biped walking of a humanoid robot.

Stair Locomotion Method of Quadruped Robot Using Genetic Algorithm (유전 알고리즘을 이용한 4족 로봇의 계단 보행 방법)

  • Byun, Jae-Oh;Choi, Yoon-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.9
    • /
    • pp.1039-1048
    • /
    • 2015
  • In this paper, we propose an efficient stair locomotion method for a quadruped robot with mechanism of insectile legs using genetic algorithm(GA). In the proposed method, we first define the factors and the reachable region for the stair locomotion. In addition, we set the gene and the fitness function for GA and generate the gait trajectory by searching the landing position of a quadruped robot, which has the minimun distance of movement and the optimal energy stability margin(ESM). Finally, we verify the effectiveness and superiority of the proposed stair locomotion method through the computer simulations.

Vibration Reduction Algorithm at the Walking-will Recognition Sensor on Uneven Terrain (비평탄지형에서의 보행의지파악 센서 진동량 감쇠 알고리즘 개발)

  • Lee, Dong-Kwang;Kong, Jung-Shik;Goh, Min-Soo;Lee, Eung-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • This paper presents the vibration reduction algorithm at the walking-will recognition sensors on the uneven terrain. Recently, concern about walking assistant aids is increasing according to the increase in population of elder and handicapped person. However, most of walking aids don't have any actuators for its movement. So, general walking aids have weakness for its movement to upward/download direction of slope. To overcome the weakness of the general walking aids, many researches for active type walking aids are being progressed. Especially, vibration analysis and impulse reduction are one of the important elements of the active-type walking aid during moving on the outdoor area because the ground has many kinds of obstacles such as speed dumps, puddles and so on. So, we analyze the influence from vibration by uneven terrain. And then, we propose the impulse reduction algorithm to overcome the vibration. All the processes are verified experimentally in an active-type walking aid.

Optimal Manipulation for a Hexapod Walking Robot (6족 보행 로봇에서의 최적 머니퓰레이션)

  • Seo, Hyeon-Se;Sung, Young Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.168-174
    • /
    • 2015
  • The ultimate purpose of a walking robot is to move to a designated spot and to perform a necessary manipulation. To perform various manipulations for a walking robot, it should have some kind of an extra manipulator. However, if the manipulation task for the robot is simple enough, the robot can perform the task by using its legs. Among various kinds of walking robots, a hexapod walking robot has relatively many legs, so it has the advantage of stability and walking speed. So, a hexapod walking robot can perform simple manipulation task by using its one or two legs while maintaining stability by using the rest of legs. In this paper, we deal with a simple manipulation task of holding a ball. We formulate the task as a redundancy resolution problem and propose a method for obtaining an optimal solution.