• Title/Summary/Keyword: 안전 구속 장치

Search Result 20, Processing Time 0.022 seconds

Performance Verification of Deploy/Stow-type Calibration Mechanism with Dual-function of Launch Locking and Fail-Safe (단일장치로 발사환경구속 및 결함안전기능이 가능한 전개수납형 교정 메커니즘의 기능검증)

  • Lee, Myeong-Jae;Kim, Tae-Gyu;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.895-903
    • /
    • 2016
  • Spaceborne imaging sensors require periodic calibrations using an on-board calibration device for an image quality of observation satellites. The on-board calibration device consists of a blackbody to provide uniform radiance temperatures and calibration mechanism with a function of stow and deploy to target the blackbody during the calibration. Among these devices, the calibration mechanism is required to implement a fail-safe function to prevent blocking of the main optical path when the mechanism stops at a certain position during on-orbit calibration. In addition, structural safety of the mechanical driving part of the mechanism within the launch environment must be guaranteed. In this study, we proposed a deploy/stow-type calibration mechanism that provides launch-lock and fail-safe function. The effectiveness of the functionality of the proposed mechanism was validated through functional test using engineering model.

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

측면 충돌시 Restraint system의 효과에 관한 연구 -Seat wing의 효과-

  • 이창민;오세민
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.91-100
    • /
    • 1995
  • 자동차의 안전도는 전통적으로 정면 충돌시 승객의 보호 정도를 가지고 비 교 된다. 그러나 근래에 와서는 다양한 사고에 의한 승객의 피해를 볼 때 정면 과 더불어 측면 충돌시의 피해를 무시할 수 없는 상태에 이르렀다. sled tests 등을 통해서 정면 뿐만 아니라 측면 충돌의 영향도 파악하고 있으나 정면 충돌보다 측면 충돌에 대해 승개 보호 장치의 개발이 미흡한 것이 현실이다. 본 연구에서는 현실적으로 보다 효과적인 occupant (운전자 및 승객) restraint system을 computer 모의 실험을 통해서 제안하고자 하였다. 기존의 안전시스템인 lap/shoulder belt system과 Air cushion에 의한 실험은 다각도로 연구되었다. 그러나 측면 충돌에서 Air Bag에 의한 충돌 감소 영향은 정면 충돌에 비해 적어지게 되어 상체 측면 보호 장치가 필요하게 된다. 본 연구에서는 운전자의 lap/shoulder belt system과 Air Bag에 의해 구속되는 dummy를 가지고 다양한 측면 충돌 각도 (0 .deg. , 15 .deg. , 30 .deg. , 45 .deg. , 70 .deg. )에서 실험이 수행되었다. 또한 각 충돌각에 대해 기존 Restraint System에 상체 측면 보호 장치(seat wing)를 포함하여 실험을 수행 하였다. 이에 대한 각각의 영향, 그리고 승객 손상도 분석 및 평가를 통하여 보안된 측면 충돌 보호 restraint system의 필요성과 그 효과를 제시하고자 한다. 실험결과 에 의하면 정면보다 측면에서 충돌하였을 경우 보조 구속 시스템인 seat wing으로 인 해 측면보호는 물론 occupant는 정면으로 나가게 개선되어 구속 시스템으로써의 이점이 확대되고 shoulder blet 또는 dummy의 감속을 통제하는 Air Bag의 잠재적인 이점이 더욱 확대되었음을 보여주고 있다. 그러나 design 단계에서 편안함, 안락감 등의 문제들과, 다른 실용적인 면에 대한 계속적인 연구가 필요하다.

  • PDF

Design of Safety and Arming Device of the Fuze using Solenoid for Improving Safety (안전성 증대를 위해 솔레노이드를 적용한 신관 안전장전장치 설계)

  • An, Ji Yeon;Jung, Myung Suk;Kim, Ki Lyug
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.197-203
    • /
    • 2014
  • The safety and arming device(SAD), one of the components of the fuzes, shall provide safety that is consistent with handling, storage, transportation, use, and disposal. In this paper, we describes the design of the SAD which includes the solenoid assembly and the solenoid driving circuit to improve the safety of the fuzes. The solenoid assembly consists of a coil assembly, a restoring spring, and a core. The solenoid assembly is added in the SAD as an additional safety device. In case of the normal circumstances, the core of the solenoid assembly restrains the $1^{st}$ and $2^{nd}$ safety devices of the SAD for those devices not to operate at all, so that the SAD can secure safety for storage, transportation, and use. In contrast, when the battery power is provided to the solenoid driving circuit just before the flight, the core confirms the power level and starts removing the restraint from the $1^{st}$ and $2^{nd}$ safety devices of the SAD, and then the SAD is able to change its mode from safety mode to armed mode. After firing, once the SAD's operations complete, the turned-on arming switch stops providing the power to the solenoid assembly automatically. It can reduce the power consumption at solenoid assembly. Therefore, the proposed solenoid driving circuit for the solenoid assembly not only unlocks the restrained solenoid assembly from the safety devices, but also saves the power consumption during the flight.

Optimization of Passenger Safety Restraint System for USNCAP by Response Surface Methodology (USNCAP에 대응하는 반응표면법을 이용한 조수석 안전구속장치 최적화)

  • Oh, Eun-Kyung;Lee, Ki-Sun;Son, Chang-Kyu;Kim, Dong-Seok;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.1-8
    • /
    • 2014
  • Safety performance of a new car is evaluated through USNCAP and their results in the star rating are provided to the consumers. It is very important to obtain high score of USNCAP to appeal their performance to consumers. Therefore the car companies have made the effort to improve their car safety performance. These efforts should satisfy the demand not only to get high score but also to pass the FMVSS, NHTSA regulations on safety. Huge numbers of car crash tests have been conducted on these bases by car companies. However physical tests spend too much cost and time, as an alternative way, the simulation on the car crash could be a solution to reduce the cost and time. Therefore the simulations have been widely conducted in car industry and various researches on this have been reported. In this study, restraint system had been optimized to minimize the injury of female passenger. Belted $5^{th}%ile$ female frontal crash test was selected from various test methods of USNCAP for the study. Initial velocity of the test was 56km/h. The combination injury probability of USNCAP was selected as an objective function and the injury limit value, which was defined in FMVSS, was set to an optimization constraint. Many researches that were similar to this study had been conducted, however most of them had limitation that interaction between airbag and safety belt had not been considered. Contrary to these researches, the interaction was considered in this study.

The study of optimization of restraint systems for injuries of Q6 and Q10 child dummies (Q6, Q10 어린이 인체모형 상해치에 대한 안전 구속 시스템 최적화 연구)

  • Sun, Hongyul;Lee, Seul;Kim, Kiseok;Yoon, Ilsung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.3
    • /
    • pp.7-13
    • /
    • 2015
  • Occupant protection performance in frontal crashes has been developed and assessed for mainly front seat occupants over many years, and in recent years protection of rear seat occupants has also been extensively discussed. Unlike the front seats, the rear seats are often occupied by children seated in rear-facing or forward - facing child restraint systems, or booster seats. In the ENCAP, child occupant protection assessments using 18-month-old(P1.5) and 3-year-old(P3) test dummies in the rear seat have already been changed to new type of 18-month-old (Q1.5)and 3-year-old(Q3) test dummies. In addition, ENCAP are scheduled with the development and introduction of test dummies of 6-year-old (Q6) and 10.5-year-old children(Q10) starting 2016. In KNCAP, Q6 and Q10 child dummies will be introduced in 2017 as well. Automobile manufacturers need to develop safety performance for new child dummies closely. In this paper, we focused on Q6 and Q10 child dummies sitting in child restraint system. Offset frontal crash tests were conducted using two types of test dummies, Q6 and Q10 child dummies, positioned in the rear seat. Q6 and Q10 were used to compare dummy kinematics in rear seating positions between Q6 behind the driver's seat and Q10 behind the front passenger's seat. The full vehicle sled test results of both dummies were conducted with different restraint systems. It showed that several injury and image data was collected as the result of the full vehicle sled test. Based on the results of these investigations, this paper describes which factor is most important and combination is the best performance when evaluating rear seat occupant protection for Q6 and Q10 child dummies.

Injury Study of Older Children Anthropomorphic Test Device with CRS Harness Belt and Vehicle Level Crash Test (CRS 하네스 벨트 사용에 따른 어린이 인체 모형 상해 연구 및 실차 레벨 충돌 평가)

  • Kang, Seungkyu;Yang, Minho;Kim, Jeonghan;Jin, Jeongmoon;Lee, Sooyul
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.31-38
    • /
    • 2017
  • For years, Q1.5 (anthropomorphic test device for 1.5 years old infant) and Q3 (anthropomorphic test device for 3 years old infant) dummy protection has been improved considerably by the effort of EuroNCAP. ISOFIX strength of vehicle structure has increased and many child occupant protection tests have made child restraint system (hereafter CRS) optimized for child safety. However, from 2016, EuroNCAP changed the dummy which is used for the child occupant protection from Q1.5/Q3 to Q6/Q10 and these were also adopted in KNCAP from 2017. Therefore, a new method is required to secure the safety for older children In this research, child dummies were tested by using adult safety systems, and the different results from each adult restraint system were compared. Finally, dummies were tested with the CRS harness belt commonly used for infants, which has yielded significant result. In this research, mid-sized sedan and small SUV were used for the test. The researchers of this paper performed sled tests to correlate between the different adult safety belt system and child injury. Following the sled test, an actual vehicle test was conducted to gather the injury data of Q-dummy with the CRS harness belts. This paper will show the advantages of applying a pre-tensioner in the second row for child protection and the necessity of CRS which has its own harness belts to improve safety for older children.

Occupant Safety Analysis for Wheelchair Bus Development (휠체어 탑승 버스의 승객안전도 분석)

  • Kim, Kyungjin;Shin, Jaeho;Yong, Boojoong;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2020
  • The express/intercity bus models have been developing for wheelchair users to provide the preferable long-distance travels by the Korean government research. In the previous studies, evaluation method was set up for the wheelchair users' safety and the study for wheelchair occupants' safety was performed under various crash loadings mimic to real accidents, frontal crash, side impact and rollover, etc. This study was focused on the evaluation of occupant behaviors and injuries (head and chest) during vehicle impact loading cases in order to ensure the safety of wheelchair passengers in the bus. The occupant response and belt loading data during the sled FE simulation were compared with those of the sled test. The simulation results showed overall safety tolerances of wheelchair occupants under the severe frontal deceleration, side impact loading based on the FMVSS 214 configuration and bus rollover loading.