論文

단일장치로 발사환경구속 및 결함안전기능이 가능한 전개수납형 교정 메커니즘의 기능검증

이명재*, 김태규*, 조문신**, 오현웅***

Performance Verification of Deploy/Stow-type Calibration Mechanism with Dual-function of Launch Locking and Fail-Safe

Myeong-Jae Lee*, Tae-Gyu Kim*, Mun-Shin Jo** and Hyun-Ung Oh*** Department of Aerospace Engineering, Chosun University*,*** Mechatronics Groups, Hanwha Thales**

ABSTRACT

Spaceborne imaging sensors require periodic calibrations using an on-board calibration device for an image quality of observation satellites. The on-board calibration device consists of a blackbody to provide uniform radiance temperatures and calibration mechanism with a function of stow and deploy to target the blackbody during the calibration. Among these devices, the calibration mechanism is required to implement a fail-safe function to prevent blocking of the main optical path when the mechanism stops at a certain position during on-orbit calibration. In addition, structural safety of the mechanical driving part of the mechanism within the launch environment must be guaranteed. In this study, we proposed a deploy/stow-type calibration mechanism that provides launch-lock and fail-safe function. The effectiveness of the functionality of the proposed mechanism was validated through functional test using engineering model.

초 록

우주용 영상센서의 비균일 출력특성 교정을 통한 영상품질향상을 목적으로 탑재교정장 치가 요구된다. 탑재교정장치는 균일한 온도정보 제공을 위한 흑체를 비롯하여, 흑체로의 지향성 확보를 위하여 전개/수납 기능이 포함되는 교정 메커니즘으로 구성된다. 이 중, 교 정 메커니즘은 궤도상에서 구동장치의 결함 발생 시 주광경로 확보를 위한 결함안전 기능 이 요구된다. 추가적으로, 구동부에 대한 발사환경에서의 구조건전성 확보가 필수적이다. 본 논문에서는 단일장치로 발사환경 구속 및 결함안전 기능 구현이 가능한 전개수납형 교 정 메커니즘을 제안하였다. 상기 제안한 메커니즘의 기능모델을 통한 동작 기능시험을 수 행하여 설계의 유효성을 입증하였다.

Key Words : On-board Calibration Device(탑재교정장치), Calibration Mechanism(교정 메커니즘), Fail-Safe(결함안전), Launch Locking(발사 구속)

⁺ Received : February 22, 2016 Revised : September 1, 2016 Accepted : September 28, 2016 *** Corresponding author, E-mail : ohu129@chosun.ac.kr

Ⅰ.서 론

적외선 센서 등과 같은 위성용 영상 센서는 궤도운용에 따른 시간경과 및 작동/비작동 반복 에 기인한 센서의 비균일 출력특성을 보정 또는 측정 대상체의 추정 정확도를 높이기 위해 탑재 교정장치를 이용하여 주기적인 보정을 실시한다. 영상센서의 출력 특성 교정을 위한 탑재교정장치 는 흑체[1-2], 전개/수납 기능을 갖춘 교정메커니 즘[3-5], 탑재교정장치 제어용 전자유닛으로 구성 된다. 여기서 혹체는 균일한 교정온도 정보를 제 공하며, 교정 메커니즘은 교정임무 수행 시 전개 (Deploy)되어 영상 센서로 흑체를 지향하고, 임 무 종료 시 수납(Stow)되어 주광 경로(Main Optical Path)를 확보한다.

탑재 교정 메커니즘은 일반적으로 영상센서의 흑체로의 지향성 확보를 위하여 교정용 반사경 등 이 장착되는 구동 구조체, 구동 구조체의 전개/수 납을 위한 스텝 모터와 같은 구동장치, 위치정보 획득을 위한 센서 또는 스위치, 구동장치의 결함 발생으로 인한 주광경로 차단 방지를 목적으로 결 함안전 기능이 포함된 설계가 이루어진다. 기존에 개발된 교정 메커니즘의 경우, 결함안전 기능 수 행을 위해 Pinpuller 또는 구속분리장치 등과 같 은 별도의 장치를 활용하였다. 상기의 장치로 구 동 구조체의 회전축과 모터를 결속하여 모터 구 동력을 전달하며, 주광경로 차단 등의 비상상황 에서 구동 구조체와 모터 간의 결속 해제를 통한 강제 수납 기능을 구현하여 영상 촬영 임무수행 이 가능하도록 한다. 추가적으로, 전개/수납의 임무수행을 목적으로 구동부가 포함되는 교정 메 커니즘은 발사환경에서의 구조건전성 확보가 필 수적으로 요구되며, 이를 위한 별도의 구속분리 장치가 적용된다[4-5]. 하지만 결함안전기능 및 발사환경 구속 구현을 목적으로 각 기능마다 별도 의 장치가 적용될 경우, 이로 인한 시스템 복잡화 의 문제점이 존재한다.

본 논문에서는 기존 교정 메커니즘의 문제점을 극복하기 위하여 형상기억합금(Shape Memory Alloy, SMA) 스프링 액추에이터를 적용하여 단 일장치로 발사환경에서의 구조건전성 확보, 궤도 상에서는 영상센서 보정을 위한 전개/수납 및 결함안전 기능이 가능한 교정 메커니즘을 제안하 였다. 제안된 교정 메커니즘의 기능모델 (Engineering Model)을 설계 및 제작하여 운용 모드별 동작 기능시험을 통해 설계의 유효성을 입증하였다.

Fig. 1. Tilt Mirror Mechanism [4]

Fig. 2. Operation Mode of the Tilt Mirror Mechanism [(a) Calibration Mode, (b) Imaging Mode] [4]

Ⅱ.본 론

2.1 종래의 교정 메커니즘

Figure 1은 다목적 실용위성 3A호에 탑재된 교정 반사경 메커니즘의 형상으로 Fig. 2와 같이 교정임무 수행 시에는 모터의 구동력으로 반사경 을 전개하여 두 개의 상이한 온도정보를 갖는 교

정용 타켓을 지향하고, 교정 임무 종료와 함께 반사경을 원위치로 수납시켜 주광경로를 확보하 는 기능을 갖는다. 반사경 구조체와 모터는 SMA 구속분리장치로 결합되어 구동되며, 모터가 불능 상태로 주광경로를 차단하게 되면, SMA 구속분 리장치를 작동시켜 반사경 구조체과 모터의 결합 을 해제시킨다. 이와 동시에 정하중 스프링을 이 용하여 반사경 구조체를 강제 수납시켜 결함안전 기능을 수행한다[4]. 이와 유사하게, JPL(NASA Jet Propulsion Lab.)에서는 Pinpuller를 이용하 여, 결함안전기능을 구현한 MIRO 교정 메커니즘 을 제안하였다. 전개/수납을 위한 모터의 구동력 은 반사경 구조체와 결합된 Pinpuller를 통하여 전달되며, 결함안전기능 구현시 Pinpuller를 작동 시켜 반사경과의 결합을 해제하고, 정하중 스프 링으로 반사경을 강제 수납시킨다[5]. 추가적으로 교정 메커니즘은 반사경 등이 장착되는 구동 구 조체를 포함하고 있어, 발사환경에서의 구조건전 성 확보가 필수적으로 요구된다. 이를 위해, Fig. 1의 교정 메커니즘은 별도의 구속분리장치를 이 용하여 구동부에 구속력을 부가하였다.

기존 메커니즘의 경우, 교정 임무 수행을 위한 전개/수납 기능을 포함하여, 발사환경 구조건전 성 확보, 결함안전 기능 등 구현이 가능하여 기 본적인 교정 메커니즘 요구조건을 충족하고 있 다. 하지만 각 기능마다 별도의 장치가 적용되고 있어 시스템 복잡화의 문제점이 존재한다. 아울 러, 기능 구현을 위해 적용된 Pinpuller 및 SMA 구속분리장치의 경우, TiNi Aerospace사[6]의 상 용 제품들이 적용되고 있어 개발 비용이 증가하 는 단점이 존재한다.

2.2 우주용 교정 메커니즘

본 연구에서는 기존 메커니즘의 문제점을 극복 하기 위하여, 자체 제작이 가능한 SMA 스프링 액추에이터 및 스테핑 모터로 구성되는 구속 핀 메커니즘을 이용하여, 단일장치로 발사환경에서 의 구조건전성 확보 및 결함안전 기능이 가능한 교정 메커니즘을 제안하였다.

2.2.1 교정 메커니즘을 적용한 영상 시스템 운용 개념

Figure 3은 탑재교정장치가 적용된 영상시스템 운용 모드별 개념을 나타내고 있다. 탑재교정장 치는 교정 메커니즘에 흑체를 탑재한 단일 시스 템으로 구성되며, 발사 및 비교정 모드(Launch & Non-calibration Mode), 교정 모드(Calibration Mode), 비상모드(Emergency Mode)로 구분되어 임무를 수행한다. Fig. 3 (a)는 발사 및 비교정

Fig. 3. Operation Mode of the Calibration Mechanism [(a) Launch & Noncalibration Mode, (b) Calibration Mode, (c) Emergency Mode]

모드를 나타내고 있으며, 발사 모드에서는 발사 환경에서의 구조건전성 확보를 위하여 흑체가 탑 재된 임무 전개판이 구속되며, 비교정 모드에서 는 영상센서로의 주광경로 확보를 위해 수납상태 를 유지한다. Fig. 3 (b)는 교정 모드로 영상 센 서 교정을 위해 흑체를 전개하여 보정 임무를 수 행하며, 임무 수행 종료 후 다시 수납되어 비교 정 모드로 복귀된다. Fig. 3 (c)는 비상 모드로 교 정 임무 종료 후 구동부 결함 발생 시 영상센서 로의 주광경로 확보가 불가할 경우 사용되며, 강 제적인 수납을 수행한다.

Fig. 4. Composition of SMA Spring Actuator

2.2.2 교정 메커니즘 개요

2.2.2.1 형상기억합금(SMA) 스프링 액추에이터

형상기억합금(Shape Memory Alloy, SMA)은 열에 의한 상변태에 의해 동작하는 기능성 재료 로서, 하중 인가에 의한 형상 변화에도 상변화 온도 이상의 열 인가시 본래의 형상으로 복원되 는 형상기억효과(Shape Memory Effect, SME)의 특성을 지닌다. 형상기억합금으로 제작된 스프링 의 경우, 형상기억효과에 기인하여 편방향으로의 복원력 및 변위가 발생된다. 이러한 특성을 이용 하여, Fig. 4와 같이 일반 압축 스프링과 결합시 액추에이터로 구성이 가능하다. 상기 액추에이터 는 SMA 스프링에 상변화 온도 인가 유무에 따 라 구동되며, 압축 스프링 및 SMA 스프링 각각 의 복원력 지배조건에 따라 양방향 구동이 가능 하다[7]. 본 연구에서는 교정 메커니즘의 요구 기 능 구현을 목적으로 SMA 스프링 액추에이터를 적용한 설계를 수행하였다.

2.2.2.2 교정 메커니즘 구성

Figure 5는 본 논문에서 제안한 단일장치로 발 사환경 구속 및 결함안전기능이 가능한 전개수납 형 교정 메커니즘을 나타낸다. 본 메커니즘은 구 속 핀 구동을 위한 SMA 스프링 액추에이터가 포함되는 구동 구조체, 구동 구조체에 회전력을 인가하는 구동부, 교정 메커니즘 구조체로 구성 된다. 메커니즘의 구동 구조체는 상기에 설명한 구속 핀 구동을 위한 SMA 스프링 액추에이터 (2EA)가 구속 핀 하우징에 탑재되며, 구속 핀 하 우징에는 메커니즘 구조체의 베어링부에 맞물리 는 회전 축이 포함된다. 또한 임무 목적에 맞도 록 반사경, 흑체 등을 탑재할 수 있는 임무 전개 판, 구동 구조체의 메스 밸런싱을 위한 무게추가 포함된다. 메커니즘 구동부는 임무 전개판을 구 동시키기 위한 스테핑 모터, 모터의 회전력 전달 을 위한 커플링을 비롯하여, 구속 핀 하우징 회 전 축과 결합하고 구속 핀과 스테핑 모터의 결합

Fig. 5. Composition of Calibration Mechanism

/해제가 가능하도록 하여 구속 핀 메커니즘을 구현하는 구속 핀 홀더로 구성된다. 메커니즘 구 조체는 메커니즘이 구성되는 베이스 프레임, 구 동 구조체의 회전방향 가이드 역할과 발사환경에 서의 구속 핀으로 구속력 부가가 가능한 구속 흘 및 결함안전 기능 시 구속 핀을 수납 가능한 수 납 홀이 포함되는 베어링 구조체, 스테핑 모터가 체결되는 모터 구조체, 각 임무 모드별 상태 신 호 획득을 위한 스위치로 구성된다.

2.2.2.3 교정 메커니즘 임무 모드별 구동 원리

본 교정 메커니즘은 발사 및 비교정 모드, 교 정 모드, 비상 모드로 구분되며, Fig. 6은 각 모 드별 메커니즘 형상을 나타낸다.

Figure 6 (a)는 발사 모드 형상을 나타내고 있 으며, 구동 구조체는 수납 형태로 배치된다. 구속 핀 하우징에 포함된 SMA 스프링 액추에이터의 구속 핀은 @와 같이 구속 핀 하우징의 회전 축과 결합되는 구속 핀 홀더의 평면부에 지지되며, (b) 와 같이 베어링 구조체의 구속 홀과 결합되어 발 사환경에서의 구속력을 부가하도록 한다. 이때 구 속 핀은 압축 스프링의 복원력을 인가받으며, 구 속 핀 흘더 평면부에 고정된다. 발사 모드 신호는 메커니즘 구조체에 배치된 수납 상태 신호 스위치 (Stow Status Switch, SSSW)를 통하여 획득한다.

Fig. 6. Mission Mode of Calibration Mechanism

Figure 6 (b)는 교정 및 비교정 모드를 나타낸 다. 스테핑 모터와 결합된 구속 핀 흘더가 스테 핑 모터의 구동 방향으로 함께 회전하며, ⓒ와 같이 구속 핀 흘더의 흘 부분과 구속 핀이 압축 스프링의 복원력으로 전개되며 결속되게 된다. 이때 ⓑ에 나타낸 베어링 구조체의 구속 흘과 구 속 핀의 결속은 해제되고, 스테핑 모터와 결합된 구동 구조체는 전개 수행이 가능하게 된다. 임무 수행 종료 시에는 스테핑 모터 구동으로 주광경 로 확보를 위해 수납되어 비교정 모드로 돌아간 다. 교정 및 비교정 모드 신호는 메커니즘 구조 체에 배치된 전개 상태 신호 스위치(Deploy Status Switch, DSSW) 및 수납 상태 신호 스위 치(SSSW)를 통하여 각각 획득한다.

Figure 6 (c)는 임무 전개판이 주광경로를 차단 하였을 경우 돌입되는 비상 모드를 나타내며, 전 력을 인가받은 SMA 스프링의 복원력을 이용하 여 구속 핀 홀더와 결속된 구속 핀을 (ề)와 같이 다시 베어링 구조체의 구동 구조체 구동 각도로 배치된 수납 홀 방향으로 전개시켜 (ⓓ)와 같이 스 테핑 모터와 구동 구조체의 결합을 해제시킨다. 해제된 구동 구조체는 임무 전개판 하부에 배치 된 정하중 스프링의 복원력에 의하여 강제 수납 되며, 베어링 구조체에 배치된 비상 상태 신호 스위치(Emergency Status Switch, ESSW)로 비상 모드 수납 신호를 획득한다.

2.2.3 교정 메커니즘 토크 버짓 분석

제안된 교정 메커니즘은 상기의 구성과 구동 원리로 이루어지며, ECSS Rules[8]를 적용하여 토크 버짓 분석을 통한 메커니즘의 기능 모델 설 계를 진행하였다. 구동 모터 선정을 위한 토크 버짓은 식 (1)와 같이 나타내어지며, 이를 통하여 스테핑 모터 (Autonics co., A40K-M566(W)-G7.2,

Torque quantities	Torque values(Nm)	Remarks
$T_{L\!/S}$	0.0253	Limit switch (SSSW/DSSW: 2EA, ESSW:1EA)
$T_{C\!F\!S}$	0.7	Constant force spring : 1EA
$T_{bearing}$	0.042	Ball bearing : 3EA
$T_{R.friction}$	0.4	Rotational friction torque
T_{motor}	2.05	Required torque on the motor

Table 1. Torque Budget of the Calibration Mechanism

5.0Nm)을 선정하였으며, $T_{L/S}$ 는 영상/교정 모드 스위치 구동 토크값, $T_{bearing}$ 은 교정 메커니즘에 적용된 볼 베어링 토크값 그리고 T_{CFS} 는 결함안 전기능 구현을 위한 정하중 스프링 토크값을 의 미한다. T_{CFS} 은 식 (2)와 같이 SMA 스프링 액추 에이터의 구속 핀과 구속 핀 홀더의 분리 직후 상호 간의 마찰 토크값을 포함하여 선정하였다. 토크 버짓 분석 결과를 Table 1에 정리하였다.

$$T_{motor} = 2(1.2T_{L/S} + 1.2T_{CFS} + 3T_{bearing})$$
(1)

$$T_{CFS} = T_{L/S} + T_{R.friction} + T_{bearing}$$
(2)

2.3 교정 메커니즘 기능 및 성능 검증시험

본 논문에서 제안한 우주용 교정 메커니즘의 기능 및 성능을 검증하기 위해 기능모델을 제작 하여 상온(27°C) 조건에서 기능시험을 수행하였 다. Fig. 7은 교정 메커니즘 운용 모드별 기능시 험 형상을 나타낸다. 기능 시험은 교정 메커니즘, 구동 구조체와 커플링으로 결합되어 전개/수납 각도측정을 위한 엔코더, 결함안전 기능 수행용 전원 공급 장치, 스테핑 모터 운영 컴퓨터, 데이 터 획득을 위한 DAQ로 구성되어 수행되었다.

2.3.1 발사 및 비교정/교정 모드 기능시험

Figure 7 (a), (b)는 교정 메커니즘 기능 모델의 발사 및 비교정 모드, 교정 모드 기능시험 형상을 각각 나타내며, 발사 모드에서 구속 핀 해제 직후, 교정 모드와 비교정 모드를 총 7cycle 반복 수행 하여 기능 검증을 수행하였다.

Figure 8는 본 메커니즘의 발사 모드에서 모터 가 구동되어 교정 및 비교정 모드 임무 수행 시 획득한 기능 시험 데이터를 나타내고 있으며, 구 동부의 구동 각도, 수납 상태 확인 스위치(SSSW), 전개 상태 확인 스위치(DSSW), 모터 구동 방향

(b)

(c)

에 따른 전압 신호를 획득하였다. 초기 발사 모 드에서는 0°의 각도로 수납되며, 수납 상태 확인 스위치로부터 수납 신호를 획득하였다. 이후 교 정 모드의 전개 방향인 반시계 방향(Counter Clock Wise, CCW)으로 모터 구동 시, 구속 핀의 구속이 해제되어 구동 구조체가 전개되며, 교정

Fig. 8. Time Profiles of Function Test

No. of tests (b)

6

Fig. 9. Test Result for Angle Measurement during Function Test [(a) Deploy Angle, (b) Stow Angle]

1

2

모드의 목표 각도(118±0.35°)에 도달하게 되면, 정 지되어 전개 상태 확인 신호를 획득하였다. 최종 적으로 비교정 모드 수행시 비교정 모드의 전개 방향인 시계 방향(Clock Wise, CW)으로 모터가 구동되어 주광경로 확보를 위한 비교정 모드의 최소 수납 조건(< 35°) 및 최대 수납 조건 (1.5±0.35°)에 만족하였으며, 수납 상태 확인 스위 치로부터 정상 수납되었음을 확인하였다. 단, 비 교정 모드에서 측정되는 최대 수납 각도는 약 1.5°이며, 이는 모터 구동 정지가 수납상태 확인 스위치의 신호로 이루어져 발생된다. Fig. 9는 7cycle 반복 수행된 교정 메커니즘의 전개각 및 수납각 획득 결과를 나타내고 있다. Fig. 9 (a)의 전개각은 118±0.22°내에 위치하여, 교정 모드의 목표 각도(118±0.35°)에 만족함을 확인하였으며, Fig. 9 (b)의 수납각은 1.5±0.04°내에 위치하여, 비 교정 모드의 목표 각도(1.5±0.35°)를 만족한다.

2.3.2 비상 모드 기능시험

Figure 7 (c)는 SMA 스프링의 복원력으로 모 터 구동부와 결합 해제되어 정하중 스프링으로 강제 수납된 비상 모드 형상을 나타내며, 비상 모드 구현을 위한 SMA 스프링 액추에이터는 Table 2에 나타낸 SMA 스프링(SmartFlex Springs, SAES co.) [9]과 압축 스프링(MISUMI Wire coil spring [M16, 10.8N, 0.5N/mm)을 적용하여 제작하 였다. Fig. 10은 본 메커니즘의 결함 안전기능을 수행하는 비상 모드로부터 획득한 기능 시험 데 이터를 나타내고 있으며, 구동부의 구동 각도, 모 터 구동 방향에 따른 전압 신호, SMA 스프링을 전압 인가 신호, 비상 상태 확인 스위치(ESSW) 신호를 획득하였다. 초기 수납 모드에서 교정 모 드로 전개가 이루어진 후, 메커니즘의 모터가 불 능 상태가 되었다고 가정하여 시험을 진행하였으 며, SMA 스프링에 요구 전력(25 Watt)을 인가하 여 결함 안전기능을 수행하였다. 전력 인가 후, 비 상 상태 확인 스위치의 수납 신호를 획득하여 메 커니즘 임무전개부가 강제 수납됨을 확인하였으 며, 수납된 최종 각도는 31.4°로 주광경로 확보를 위한 비교정 모드의 최소 수납 조건(< 35°)에 만족 하였다. 비상 모드 기능시험은 총 3회 실시하여 정상 구현됨을 확인하였으며, 이에 대한 결과를 Table 3에 정리하였다. 시험 결과, 결함안전 기능 작동 시간은 최대 40초의 차이를 보이고 있다. 이 는 SMA 스프링과 구속 핀 및 구속 핀 하우징의 접촉면적의 차이에 기인한 SMA 스프링 상변화 온도 도달까지의 시간 차이로 판단된다. 이로부터, 균일한 작동시간의 확보를 위하여 해당부분에 대 한 추가적인 단열 설계의 필요성을 확인하였다.

Table	2.	Specification	of	SMA	Spring	[9]
-------	----	---------------	----	-----	--------	-----

Spring Type	Compression		
\emptyset_{wire}	1.5 mm		
Diameter	10.3 mm		
Free Length	26 mm		
Typical Force	10-15 N		
Typical Stroke	8-12 mm		
Activation Temperature (A_s)	95-100 °C		

Table 3. Calibration Mechanism Fail-Safe Function Test Results Summary

Test No.	Release Time (sec)	ESSW	Stow Angle (Degree)	SMA Spring Input Power
1	150	on	31.4	
2	130	on	31.35	25 W
3	190	on	31.3	

Ⅲ.결 론

본 연구에서 제안한 우주용 교정 메커니즘은

형상기억합금(Shape Memory Alloy) 스프링 액 추에이터 및 스테핑 모터로 구성되는 구속 핀 메 커니즘을 이용하여, 단일장치로 발사환경에서의 구조건전성 확보, 영상센서 보정을 위한 전개/수 납 및 결함안전 기능이 가능하다. 이는 각각의 기능 수행을 목적으로 별도의 장치들이 적용되어 졌던 시스템 복잡화의 문제점을 극복 가능할 뿐 만 아니라, 상용 제품 선정으로 인한 개발 비용 소요를 방지할 수 있다. 설계의 유효성 판단을 위하여 고안된 교정 메커니즘의 기능모델을 제작 후, 운용 모드별 동작 기능시험을 실시하였으며, 시험결과를 토대로 설계가 의도한대로의 기능이 구현되었음을 확인하였다. 향후, 본 메커니즘의 진동시험을 수행하여 발사 환경에서의 구조건전 성 및 기능 검증을 수행할 예정이다.

후 기

본 연구는 한국연구재단의 우주핵심기술개발사 업 (NRF-2014M1A3A3A02034813)의 지원으로 수 행되었습니다.

References

1) Jin, K. W., Joo, G. H. and Yang, K. H., 2009, "Research Trend of Calibration Methods on the Satellite Visible and Infrared Sensors", *Current Industrical and Technological Trends in Aerospace*, Vol. 7, No. 1, pp. 89~96.

2) Shin, S. M., 2013, "Black Body Design and Verification for Non-Uniformity Correction of Imaging Sensor and Uncertainty Analysis", *Journal of The Korean Society for Aeronautical and Space Sciences*, Vol. 41, No. 3, pp. 240~245.

3) Olschewski, F., et al., 2013, "The In-flight Blackbody Calibration System for the GLORIA Interferometer on Board an Airborne Research Platform", *Atmospheric Measurement Techniques*, Vol. 6 No. 11, pp. 3067~3082.

4) Oh, H. U., Jo, M. S., Lee, K. M. and Kim, D. J., 2012, "Spaceborne Tilt Mirror Mechanism and Application of Shape Memory Alloy Actuator to Implement Fail-safe Function in Emergency Mode", *Journal of the Japan Society for Aeronautical and Space Sciences*, Vol. 55, No. 6, pp. 373~378.

5) Suchman, J., Yuki, S., and Holly, K., 2001,

"MIRO Calibration Switch Mechanism", *The* 35th Aerospace Mechanisms Symposium, pp. 179~184.

6) www.tiniaerospace.com

7) Degeratu, S., et al., 2008, "On the Design of a Shape Memory Alloy Spring Actuator using Thermal Analysis. *WSEAS transactions on* systems, Vol. 7, No. 10, pp. 1006~1015.

8) European Cooperation for Space Standardization, "Space Engineering Mechanisms", ESA Requirements and Standards Division, 2009, ECSS-E-ST-33-01C.

9) www.saesgetters.com