• Title/Summary/Keyword: 안전해석

Search Result 4,403, Processing Time 0.033 seconds

An Assessment of Safety Factor for Tunnels Excavated in a Weak Rock Layer (연약 암반층에 굴착된 터널의 안전율 평가)

  • You, Kwang-Ho;Park, Yeon-Jun;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.47-57
    • /
    • 2000
  • It is difficult to calculate factor of safety of a tunnel by applying any analytical method based upon limit equilibrium method since the shape of failure plane in tunnel analysis can not be easily assumed in advance. To cope with this shortcoming, a method is suggested to calculate safety factor of a tunnel by numerical analysis using strength reduction technique. A circular tunnel excavated in a homogeneous rock was selected as an example problem and factors of safety were calculated for no-supported, partly-supported, and completely-supported cases respectively. Meshes with 3 different sizes were examined for a sensitivity analysis. For the verification of the proposed method, a limit equilibrium analysis was conducted and compared with the numerical analysis. The proposed method herein can be used to calculate factor of safety of a tunnel regardless of tunnel shape or geological conditions, and thus can contribute for the improved design and stability assessment of tunnels.

  • PDF

Blowdown Prediction of Safety Relief Valve and FSI Analysis (안전릴리프밸브의 블로우 다운 예측 및 유체-구조 연성해석)

  • Choi, Ji-Won;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.729-734
    • /
    • 2017
  • A safety relief valve is a device that relieves excessive pressure in piping lines or tanks and maintains pressure at the appropriate pressure level for use. The (pressure in the) safety valve is directly influenced by the change in the back pressure, depending on whether the vents in the spring bonnet are vented to the atmosphere or to the outlet. The back pressure is divided into the built-up back pressure and the superimposed back pressure, and the back pressure characteristics vary according to the usage conditions. The safety valve used in this study is a Conventional Safety Relief Valve. The blowdown of the safety valve is predicted by establishing the equilibrium equation between the opening force and spring force considering the back pressure characteristics. Its reliability is secured by using CFX17.1. In addition, the safety of the safety valve trim was examined through fluid-structure interaction analysis.

Structural Analysis of KARI General Small-scaled Rotor Test System (GSRTS) (KARI 축소 로터 시험장치(GSRTS) 구조해석)

  • Kim, Deog-Kwan
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • This paper describes the structural analysis results of KARI General Small-scaled Rotor Test System (GSRTS) operated in KARI to verify operational safety. This GSRTS was developed to conduct a froude and mach small-scaled rotor test. This analysis was performed to investigate the structural Factor of Safety for the various small-scale rotor system like articulated or hingeless rotor and to check the operational capability using given operational design load. Specially, drive system has several bearings, mechanical gears, shaft, etc. and these parts must be required to achieve an operational safety. The calculation was done by using geometric data and material properties by analytical method. This rotor test system should be operated within these calculated Factor of Safety. Furthermore, the operational limitation should be defined as applied to small-scale rotor system of KUH in future.

  • PDF

A Study on the Strength Safety Analysis of a Full Containment LNG Storage Tank Due to a Wind Pressure (완전밀폐식 LNG 저장탱크에 작용하는 풍압에 의한 강도안전 해석에 관한 연구)

  • Kim, Chung-Kyun;Jeong, Nam-In
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.36-41
    • /
    • 2008
  • Using the finite element analysis, this paper presents the strength safety of a side wall of an outer tank and a roof structures in a full containment LNG storage tank system. The outer tank structure in which is constructed with a prestressed concrete is forced by internal hydrostatic and hydrodynamic pressures of a leaked LNG and an external wind pressure including a typhoon one. The FEM computed results show that the ring beam between a side wall of an outer tank and a roof structure supports most of the internal and the external loads. This means that the design point of the outer tank system is a ring beam structure and the other one is a center part of the roof structure. In this FE analysis model of a full containment LNG tank system, the outer tank and the roof structures are safe for the given combined loads such as an internal leaked LNG pressure and an external typhoon pressure.

  • PDF

Analytical Verification of the Standard Inclinations of Slope in the Design Criteria (설계기준에 제시된 사면 표준경사에 대한 해석적 검증)

  • Lee, Seung-Hyun;Kim, Byung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5342-5348
    • /
    • 2014
  • Slope stability analyses were conducted to investigate the limitations of application of the standard inclination of slope and the effects of the berm width on the slope stability. The standard slope inclination could be applied to the basic slope sections that were considered for the analyses, whereas additional slope stability analysis should be performed for the case of considering ground water. A comparison of the factors of safety between the case of installing a berm and the case of letting the grading have an equivalent section area with the case of installing the berm, the factors of safety in the case of installing a berm were greater than those for the case of allowing grading, and the differences between the factors of safety increase with increasing berm width. For all the sections considered in the analyses, the increments of the safety factor were proportional to the width of the berm and those corresponding to the embankment slope and cut slope with a berm width of 7m were 34.5% and 48%, respectively.

Stability Analysis for Jointed Rock Slope Using Ubiquitous Joint Model (편재절리모델을 이용한 절리 암반 사면의 안정성 해석)

  • 박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 1998
  • Limit equilibrium method is widely used for the stability analysis of soil slopes. In jointed rock slopes however, the failure of the slope is largely dependent upon the strength and deformability of the joints in the rock mass and quite often failure occurs along the joints. This paper describes the use of ubiquitous joint model for the stability analysis of the jointed rock slopes. This model is essentially an anisotropic elasto-plastic model and can simulate two sets of joint in arbitrary orientations. Validation of the developed with the factor of safety equal to unity was selected when the shape of the failure plane is assumed log spiral. Then the factor of safety of the rock slope having two perpendicular joint sets was calculated while rotating joint orientations. Rusults were compared with limit equilibrium solutions on soil slopes having equivalent soil properties when plane sliding was assumed. Developed model predicted the factor of safety of jointed rock slope in a reasonable accuracy when joint spacing is sufficiently small.

  • PDF

The Strength Evaluation of the Damaged Pressure Vessel (손상된 압력용기의 복구방안)

  • 이상록;우창수;이학주
    • Journal of the KSME
    • /
    • v.34 no.11
    • /
    • pp.830-835
    • /
    • 1994
  • 화재에 의해 손상을 입은 압력용기에 대해 유한요소법을 이용하여 응력해석을 수행하여 아래와 같은 결론을 얻었다. (1) 응력해석 결과, 압력용기의 자중, 열응력 및 바람의 영향은 내부압력에 비해 무시할 수 있을 정도로 미미하였다. (2) 기하학적 형상변화가 발생한 손상용기의 손상 부위에서의 부식 전\ulcorner후에서의 안전계수는 각각 3.5와 2.1로 손상이 없는 단순용기의 6.3과 4.6보다 상당히 작음을 알 수 있었다. 따라서, 손상 부위에서의 적절한 보강이 이루어져야 할 것이다. (3) 원형 링과 수직 보조대로 보강된 보강용기 모형의 등가 응력값은 상당히 감소되어 화재로 발생한 기하학적 형상 변화에 따른 응력 집중을 줄일 수 있었다. 앞서 정의된 안전계수를 이용 하면 부식 전의 안전계수는 5.3, 부식 후는 3.8 이상으로 증가하였다. (4) 안전계수는 운전 중의 부식 진행과 더불어 두께에 반비례하여 감소하므로, 운전중 부식의 진행을 억제 또는 최소화할 수 있는 방법이 강구되어야 하겠다. (5) 복구방안으로 본 연구에서 해석된 보강책을 채택하는 경우, 작업시 보조대 주위에서의 잔류 응력이 발생되지 않도록 특히 유의해야 하며, 복구 작업 후 철저한 시험검사(비파괴 검사, 스트 레인 측정)가 수반되어야 할 것으로 사료된다.

  • PDF

대용량 피동형원자로의 안전계통 성능평가를 위한 냉각재상실사고 해석

  • 김성오;김영인;정법동;황영동;장문희
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.534-541
    • /
    • 1997
  • 1000MWe급 피동형원자로기 안전계통 성능 및 RELAP5 코드의 적용성 평가를 목적으로 AP600을 참조노형으로 설정된 1000MWe급 대용량 피동형원자로에 대한 냉각재 상실사고를 모의 해석하였다. 대형냉각재상실사고시 발생되는 현상들은 기존 원자로와 큰 차이가 없고, 이들 현상을 모의하기 위한 모델링 요건들이 피동형계통 분석에 동일하게 요구되었으며, 계산된 PCT가 규제기관의 허용치에 충분한 여유도를 갖고 있어 대형냉각재상실사고시 충분한 노심냉각 능력을 갖는 것으로 평가되었다. 또한 안전주입 배관이 파단되는 소형냉각재 상실사고를 해석한 결과 KP1000의 피동안전계통은 ADS의 작동에 의하여 노심을 노출시키지 않고 적절한 사고완화 기능을 수행할 수 있는 것으로 분석되었다.

  • PDF

A Test Verified Model Development Study for Seismic Qualification(Safety) (내진검증(안전)을 위한 실험적 고찰을 이용한 해석 모델 개발연구)

  • Uk-Hwan Sur
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.286-291
    • /
    • 1998
  • This paper includes discussion on developing the test verified finite element model for one of the seismic qualification(safety) approaches. It presents a test verified finite element model of a UPS(Uninterruptible Power Supply System) to be used at KMRR, KAERI. The test verified model predicts natural frequencies within 5 percent error for all major modes below 50Hz. This model accurately represents the dynamic characteristics of the actual hardware and is qualified for its use in the final stress analysis for seismic verification.

  • PDF

A Study on Safety Assessment of Semi-Submersible Catamaran's Bottom Glass (반잠수형 쌍동선의 수중관람창 안전성 평가)

  • Lee, Kyoung-Hoon;Kim, Yoo-Il
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.36
    • /
    • pp.2-14
    • /
    • 2014
  • 수중관람창의 판 두께산정식의 유효성을 판단하기 위하여 ISO기준과 일본기준을 비교하고 쌍동선에 설치되는 관람창의 안전성을 평가하기 위해 상용 유한요소해석 프로그램인 ABAQUS를 이용하여 Plexiglass의 두께를 산정하였다. 그 결과를 KS V ISO 12216:2005에 제시된 응력과 처짐에 의한 두께 산정 기준에 따라 관람창의 압력시험을 실시하여 유한요소해석의 적합성을 판단하였다. 또한, 선박과 관람창 연결부(Framing부)는 ISO 11336-1:2012(E)에서 제시된 6가지의 Type중 볼트가 체결된 4가지 경우에 대한 구조해석을 실시하여 연결부의 타입을 결정하였다.

  • PDF