• Title/Summary/Keyword: 안전설계 기준 검토

Search Result 358, Processing Time 0.021 seconds

Safety Regulation of Enhanced In-Service Inspection(ISI) in Nuclear Power Plant (원자력발전소 강화 가동중검사 안전규제)

  • Shin, Ho-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.380-385
    • /
    • 2010
  • The integrity of components and piping of operating nuclear power plants has been identified by in-service inspection(ISI) requirements and activities commensurate with standards and codes such as KEPIC MI or ASME Code Section XI. However, the other various degradation mechanisms not considered during design stage of nuclear power plants have been checked by enhanced ISI. The requirements of enhanced ISI have been voluntarily developed by the industry itself or strickly issued by regulatory body. Even though the requirements were developed by the industry, they should be reviewed by regulatory body for their application in nuclear power plants. The enhanced ISI activities and requirements of non-destructive examination(NDE) which reflect the degradation issues in nuclear power industry will be primarily discussed in this paper.

A Study on Performance-Based Design Enforcement (성능위주설계 시행의 개선방안)

  • Lee, Yang-Ju;Ko, Kyoung-Chan;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-73
    • /
    • 2012
  • Performance-based design (PBD) for large scale high rise buildings has been enforced to secure fire and evacuation safety since July 1, 2011. As various types of trial and error were expected in the early stage, to suggest solutions to the problems that might be followed by the enforcement, the regulations on PBD were reviewed and a questionnaire survey to fire protection specialists was carried out. It was confirmed that PBD is required for large scale apartment buildings, and specific and detail criteria for PBD methodology and evaluations, education for PBD to personnel who design and evaluate are also in need.

A Study on the Development of Integrated Folding Composite Wing Using Optimal Design and Multiple Processes (최적설계 및 다중공정을 적용한 일체형 접이식 복합재료 날개 개발 연구)

  • Lee, Jong-Cheon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • This research was carried out to develop an integrated folding wing made from carbon composite materials. Design requirements were reviewed and composite wing sizing was conducted using design optimization with commercial software. Three composite manufacturing processes including hot-press, pultrusion, and autoclave were evaluated and the most suitable processes for the integrated wing fabrication were selected, with consideration given to performance and cost. The determined manufacturing process was verified by two design development tests for selecting the design concept. Stiffness and strength of the composite wing were estimated through structural analyses. The test loads were calculated and static tests about design limit load and design ultimate load were performed using both wings. As a result, the evaluation criterions of the tests were satisfied and structural safety was verified through the series of structural analyses and testing.

Structural Analysis of the Governing Variables Affecting the Structural Strength Evaluation of the Lashing Bridges in Container Vessels (컨테이너선 라싱 브릿지 구조 강도 평가에 영향을 미치는 주요 변수의 구조해석)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.230-237
    • /
    • 2023
  • Due to the COVID-19 pandemic and climate change, shortages of essential commodities and resources continue to occur globally. To address this problem, trade volume demand suddenly increased, driving up the freight rate of container ships sharply. The size of container vessels progressively increased from 1,500 TEU (twenty-foot equivalent unit) in the 1960s to 24,400 TEU in 2021. As the improvement of container loading capacity is closely related to the enlargement of the lashing bridge structure, it is necessary to design a structure effective for good container securing and safe under the various external loads that occur during voyage. Major classification societies have recently issued structural-analysis-based guidelines to evaluate the structural safety of lashing bridges, but their acceptance criteria and evaluation methods are different, causing confusion among engineers during design. In this study, the strength change characteristics are summarized by variations in the main variables (modeling range, opening consideration, mesh size) likely to affect the results. Based on this result, the authors propose a reasonable structural-analysis-based evaluation that is expected to serve as a reference in the next revision of classification standards.

Estimation on External Forces Applied to Suction Caisson Using Seepage Analysis (침투해석을 이용한 석션 케이슨에 작용하는 외력 평가)

  • Kim, Jeongsoo;Jeong, Yeon-Ju;Park, Min-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.317-325
    • /
    • 2019
  • A suction caisson has been widely used for anchor and foundation of offshore structures due to its broad application, simple installation, and rapid construction. In design of suction caisson foundation, the bearing capacity and the stability of soil are mainly dealt with and analysis methods for them are presented in design codes related to the foundation. On the other hand, the method for structural safety analysis of the suction caisson is not generalized, in particular for load modeling of the caisson under suction. Consequently, there are difficulties in design of the caisson cross section. For this reason, this study analyzed the magnitude and distribution of pore water pressure on inner and outer surface of the caisson using theoretical and numerical seepage analyse, and an approach to reasonably estimate the load applied to the structural analysis of the caisson was presented. Furthermore, effects of penetration depth, anisotropy of permeability, and suction pressure on the pore water pressure were analyzed.

A Study on Fairway Routeing in Sea Areas Adjacent to Mokpo Port (목포 인근해역 항로지정에 관한 연구)

  • Hong Tae Ho;Seong Yu Chang;Jeong Jae Yong;Jeong Dae Deuk;Park Sung Hyeon;Park Gyei Kack
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.85-92
    • /
    • 2003
  • Sea areas outside Mokpo-Gu are not routed to a fairway, and PTMS is not done there. And there are many dangerous elements because some fairways are crossed In this papar, we proposed a maritime traffic system which was designed with expert group's knowledge for sqfe navigation in the area and PIANC rule(1980).

  • PDF

A Study on the Stability of the Slope according to the Bedding of the Sedimentary Rocks (퇴적암지대의 층리 경사에 따른 비탈면 안정성 검토)

  • Seonggi Yu;Chanmook Chung;Dongwon Lee
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • A standard slope stability analysis was undertaken for new railway sections, based on the slope of sedimentary rock layers and filling material (sand), to evaluate the stability of the cut-off slope in the section passing through a zone of sedimentary rock. The stability analysis was undertaken during the dry and rainy seasons, accounting for earthquake occurrence, based on slope design criteria. It was found that if the slope of the sedimentary rock formation was <10°, the effect on the safety rate of the cut-off slope was insignificant. Furthermore, a slope relief of 1:1.0 or more should be applied with slopes of 10~20°, and 1:1.2 or more with >20°. This study provides an important reference for evaluation of slope stability when railway and road construction is undertaken in areas of sedimentary rock.

Structural Safety Evaluation of Multi-Pressure Integrated Chamber for Sport-Multi-Artificial Environment System (스포츠 멀티 인공환경 시스템을 위한 다중압력 일체형 챔버의 구조안전성 평가)

  • Lee, Joon-Ho;Kang, Sang-Mo;Chae, Jae-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.324-328
    • /
    • 2019
  • There are several dedicated individual chambers for sports that are supplied and used, but none of them are multi-pressured all-in-one chambers that can provide a sport-multi environment simultaneously. In this study, we design a multi-pressure (positive / atmospheric / negative pressure) integrated chamber that can be used for the sport-multi-artificial environment system. We presented new chamber designs with enlarged space for the tall users and then carried out structural analysis with maximum stress and structural safety. Under the targeted allowable pressure conditions, maximum stresses occurred at the joint of the shell and the entrance, the structural safety of the chamber was evaluated with the allowable stress of its material. As a result of the structural analysis of the multi-pressure integrated chamber, the maximum stress for the positive pressure and negative pressure conditions was much smaller than the allowable stress of its material. And as a result of the structural safety evaluation, it was confirmed that the design of the final prototype for the chamber was structurally safe by satisfying the safety factor of 2 or more.

Evaluation of Vibration and Structural Performance of an Innovative Sliding Step Steel Stair Using Full-Scale Mock-up Test (실물대 목업실험에 의한 슬라이딩스텝 철골계단의 진동 및 구조성능 평가)

  • Kim, Sung Yong;Lee, Cheol Ho;Kim, Na Eun;Cho, Sung Sang;Chung, Woon Ok
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.511-522
    • /
    • 2014
  • In this study, an innovative steel stair system is presented which enables rapid erection and high quality control in both residential and office building construction. This system features two lightweight steel stringers of box shape, bolted connections easy to absorb construction tolerance, and stair steps movable transversely (or sliding steps) such that the work space needed for concrete stairway wall could be easily provided. In this type of stairway system, other than providing robust connecting details, ensuring vibration performance is especially important since this system may be vibration-sensitive due to lightweight nature and/or probable low damping. To tackle these issues, a series of full-scale mock-up tests were conducted by using box-shape stringer members with or without concrete-fill. The connection system was shown to be sufficiently stiff and strong, or it remained elastic even under the 160% of service load level. Among the seven stringer alternatives, five exhibited satisfactory vibration performance according to the related North American and European acceptance criteria.

A Study on the Improvement of Design for Safety(DfS) System (설계안전성검토(DfS) 제도의 개선방안 연구)

  • Lee, Solim;Cho, Sungwoo;Kim, Dongeon;Yu, Jiyoung;Lee, Eunmi
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.2 no.2
    • /
    • pp.70-75
    • /
    • 2019
  • The purpose of this study is to conduct survey on the DfS system for employees who perform construction-related tasks, analyze the results, and present improvement directions. The results of the survey showed that the system was gradually being settled, with about 82% and 93% positive results on the recognition and necessity of the system. In addition, the three highest response rates for the improvement of the system were first, improving the expertise of DfS-related performance personnel, second, improving the awareness of DfS-related actors, and third, reflecting the appropriate costs associated with DfS. For the realization of the above improvements, it was proposed to prepare a curriculum for improving the professionalism of the staff, to implement an incentive system for improvement of perception, and to prepare appropriate payment criteria for preparing reports available during the construction phase. In addition, the Korea Infrastructure Safety and Technology Corporation will need to perform its active role in order to become a system for preemptive management of risk factors for construction accidents from the design stage.