• Title/Summary/Keyword: 안전계수(safety factor)

Search Result 357, Processing Time 0.021 seconds

Influence of Rainfall Intensity and Saturated Permeability on Slope Stability during Rainfall Infiltration (강우침투시 강우강도와 포화투수계수가 안전율에 미치는 영향)

  • Lee, Seung-Rae;Oh, Tae-Kyu;Kim, Yun-Ki;Kim, Hee-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.65-76
    • /
    • 2009
  • The unsaturated characteristics of Korean weathered granite soils have been studied to investigate the influence of saturated permeability, rainfall intensity and soil-water characteristic curve (SWCC) on the slope stability. The upper, average and lower SWCCs were estimated from the publication and experimental results using the statistical concept. The roughly estimated SWCC can be used for the soils without experimental results by relating SWCC with the particle size distribution curve. An appropriate ratio between the saturated permeability and the rainfall intensity ($k_s$/i) was also suggested for practical use in designing the slopes by investigating the time-dependent variation of slope instability during the rainfall. The slope stability was deteriorated from the initiation of rainfall and recovered again after the factor of safety reached the critical value. The FS of the slope decreased at first and then increased after reaching the critical value during the rainfall. As a result, the slope instability was not related with an absolute rainfall intensity but with the ratio between the saturated permeability and the rainfall intensity. In case of the upper SWCC, the critical condition occurred when the ratio between the saturated permeability and the rainfall intensity was in the range of $1.0{\sim}2.0$.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Canadian Deuterium and Uranium Reactor (중수로(CANDU)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.381-390
    • /
    • 2009
  • In this paper, a complementary analysis for the structural safety evaluation of the spent nuclear fuel disposal canister developed for the Canadian Deuterium and Uranium(CANDU) reactor for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been performed. However this developed structural model of the spent nuclear fuel disposal canister which has 33 spent nuclear fuel baskets and whose diameter is 122cm is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been required to develop very much. There are two methods to reduce the weight of the CANDU canister model. The one is to alleviate severe design conditions such as external loads and safety factor. The other is to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number. Hence, in this paper a complementary analysis to alleviate such severe design conditions is carried out and simultaneously structural analyses to optimize the cross section shape of the canister by reducing the spent nuclear fuel basket number below 33 are carried out by varying the external load and the canister diameter for the reduction of the canister weight. The complementary analysis results show that the diameter of canister can be shortened below 122cm to reduce the weight of the spent nuclear fuel disposal canister.

A Complementary Analysis for the Structural Safety Evaluation of the Spent Nuclear Fuel Disposal Canister for the Pressurized Water Reactor (가압경수로(PWR)용 고준위폐기물 처분용기의 구조적 안전성 평가 보완 해석)

  • Choi, Jong-Won;Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2007
  • A structural model of the spent nuclear fuel disposal canister for the pressurized water reactor(PWR) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed. However this developed structural model of the spent nuclear fuel disposal canister is too heavy to handle without any structural safety problem. Hence a lighter structural model of the spent nuclear fuel disposal canister which is easy to handle has been tried to develop very much. One of the reasons which made the structural model heavy is considered to be due to the severe adaptation of the design conditions like external loads and safety factor etc. to the canister design. Hence a complementary analysis to alleviate such severe design conditions is required for the reduction of the canister weight. In this study, a complementary structural analysis for the spent nuclear fuel disposal canister is carried out changing the design conditions such as external loads and safety factors to recalculate the design parameters like diameter and thickness etc. of the canister. The complementary analysis results shows that the diameter of canister can be shortened from 122cm to 102cm to reduce the weight of the spent nuclear fuel disposal canister.

Bioconcentration Factor(BCF) of Perchlorate from Agricultural Products and Soils (농산물과 토양에 대한 퍼클로레이트 함량 평가 및 생물농축계수 산출)

  • Kim, Ji-Young;Kim, Min-Ji;Lee, Jeong-Mi;Kim, Doo-Ho;Park, Ki-Moon;Kim, Won-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2013
  • BACKGROUND: Perchlorate(${ClO_4}^-$) is an anion that is extremely water-soluble and environmentally stable. It mostly exists in the form of sodium perchlorate, ammonium perchlorate and potassium perchlorate which are used in rocket fuels, propellants, ignitable sources, air bag inflation systems and explosives. Perchlorate can be taken into the thyroid glands and interfere with iodide uptake. The determination of perchlorate in agricultural products is important due to its potential health impact on humans. The objective of this study was to determine the perchlorate concentrations in the samples of various agricultural products and soils. METHODS AND RESULTS: In this study, samples of cereal(Rice, Barley, Corn, Bean), vegetable(Spinach, Lettuce, Sesame, Chives, Chili, Pumpkin, Tomato), fruit(Apple, Pear, Tangerine, Grape) were analyzed for perchlorate contents. Perchlorate concentrations were analyzed by liquid chromatography-tandem mass spectrometry. The results showed that agricultural products respectively contained perchlorate concentrations in the range of : cereals N.D.~$7.46{\mu}g/kg$, vegetables $0.52{\sim}23.06{\mu}g/kg$, fruits $0.19{\sim}2.66{\mu}g/kg$. Bioconcentration factor was in the order of : vegetables > cereals > fruits. Bioconcentration factor was highest follwed by Sesame 37.88, Corn 21.51, Spinach 10.57, Tangerine 4.39, Chives 2.89 and Lettuce 1.90. The recoveries of perchlorate from spiked agricultural products and soils ranged from 87.72~111.26% and 102.09~111.23%. CONCLUSION(S): The health risk assessment results obtained in this study are lower than the RfD(Reference Dose, 0.0007 mg/kg/body weight/day) value as suggested by the Integrated Risk Information System(US IRIS). Our results indicate that, people currently exposed to perchlorate from agricultural products consumption are considered as safe.

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures (대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근)

  • Lee, Yun-Su;Park, Do-Hyun;SunWoo, Choon;Kim, Gyo-Won;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.120-129
    • /
    • 2012
  • Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

A Study on the Examination of Explosion Hazardous Area Applying Ventilation and Dilution (환기 및 희석을 적용한 폭발위험장소 검토에 관한 연구)

  • kim, Nam Suk;Lim, Jae Geun;Woo, In Sung
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.27-31
    • /
    • 2018
  • Classification of explosion hazard areas is very important in terms of cost and safety in the workplace handling flammable materials. This is because the radius of the hazardous area determines whether or not the explosion-proof equipment is installed in the electrical machinery and apparatus. From November 6, 2017, KS C IEC-60079-10-1: 2015 will be issued and applied as a new standard. It is important to understand and apply the difference between the existing standard and the new standard. Leakage coefficients and compression factors were added to the leakage calculation formula, and the formula of evaporation pool leakage, application of leakage ball size, and shape of explosion hazard area were applied. The range of the safety factor K has also been changed. Also, in the radius of the hazardous area, the existing standard applies the number of ventilation to the virtual volume, but the revised standard is calculated by using the leakage characteristic value. In this study, we investigated the differences from existing standards in terms of ventilation and dilution and examined the effect on the radius of the hazard area. Comparisons and analyzes were carried out by applying revised standards to workplaces where existing explosion hazard locations were selected. The results showed that even if the ventilation and dilution were successful, the risk radius was not substantially affected.

Realistic Determination of Design Loads and Design Criteria for Bridge Structures (교량구조물의 합리적인 설계하중 결정 및 설계기준)

  • Oh, Byung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.55-66
    • /
    • 1991
  • Presented is a study on the realistic determination of design loads and design criteria for bridge structures. The current bridge design code does not consider realistically the uncertainties inherent in loads and resistances and thus the level of safety varies greatly among the bridge spans. The resonable bridge design loads and design criteria which exhibit uniform reliability among various bridge spans are therefore derived in the present paper. The proposed design loads are determined from the analysis of numerous data obtained from actual traffic survey and the design criteria are based on the advanced concept of load and resistance factor format. The live load factors take into account resonably the effects of traffic volume increase. The proposed design loads and design criteria show uniform safety level for various bridge spans and reasonably consider the effects of traffic volume increase. The present study provides useful and valuable data for new version of our bridge design code.

  • PDF

A Study on Quality Characteristics of 3D Printer Using Kano Model and Timko Customer Satisfaction Factor - Focused on Makers - (Kano 모델과 Timko 고객만족계수를 활용한 3D프린터 품질특성에 대한 연구 -메이커스를 중심으로-)

  • Won, Jong Myeon;Kim, Youn Sung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.107-121
    • /
    • 2018
  • This study investigates the effects of the Kano model on the product quality and quality satisfaction on the FDM low cost 3D printer, which is used by consumer and makers. 3D printer product quality is analyzed in terms of functionality, usability, durability, reliability and safety based on the inherent quality of the product itself. This study were tested using Kano analysis to calculate the product detail characteristics and Timko coefficient to calculate the degree of satisfactory effects of the 3D printer. As a result, this study becomes product size, the output speed, durability against external impact as attractive quality and the safety part is regarded as One-dimensional quality. With the exception of surface resolution, the Timko customer satisfaction index was the same as the Kano model.

Stress Analysis of a Trunnion Ball Valve for Ball Weight Reduction (이축 볼밸브의 볼 경량화를 위한 응력해석)

  • Kim, Hyung-Woo;Cho, Su-gil;Park, Jane;Lee, Jaehwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.373-380
    • /
    • 2020
  • A valve product can be over-designed or too heavy. Finite element analysis was performed using ANSYS for two and three-dimensional ball valve models, and the ball weight was reduced by optimization within the allowable design criteria. The ball is structurally safe according to the computed stress values, which are within the material's admissible stress. The weight was reduced by about 22%, and the structural safety factor was 1.25. The structural safety of the seat insert and ring, which are used to prevent leakage, was confirmed through finite element analysis. It is shown that the two-dimensional analysis can result in similar values to the three-dimensional analysis for the axisymmetric structure. The redesign of the valve is not included in the results since such changes require a whole new design process, including all valve components.

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.