• Title/Summary/Keyword: 안전계수(safety factor)

Search Result 357, Processing Time 0.025 seconds

The Safety Evaluation of Expressway Geometries by Cross-sectional Analysis Techniques (횡단면 분석기법을 적용한 고속도로 기하구조 안전성 평가)

  • Seo, Im-Ki;Choi, Jong-Tae;Park, Je-Jin;Park, Shin-Hyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.417-426
    • /
    • 2015
  • The representative design elements of the road geometric structure are longitudinal slope, horizontal curve radius, super elevation, and transition curve. According to the function of a road, the design standards of these elements is applied by diverse combinations of them. This study divided expressway into homogeneous segments based on longitudinal slope and horizontal curve radius. And then, data required for analysis were matched to each segment, and the safety performance function was built by using the established data. crash modification factors which can explain traffic accident exposure rate were calculated. When the threshold value of horizontal curve radius R=1,000 m was set to 1.0, the crash modification factors at R=300 m was calculated as 1.33, which means that the accident exposure rate is increased by 33%. When the threshold value of the longitudinal slope 0% was set to 1.0, the crash modification factors demonstrated that the accident exposure rate decreases on the upward slope and the accident exposure rate increases on the downward slope. The results of this study can be used as basic information in the design of expressway geometries during the improvement or the construction of expressways.

Optimization Design of a Gas Valve for a LPG Cylinder Using a Taguchi's Experimental Method (다구찌 실험법을 이용한 액화석유가스 용기용 밸브의 최적설계에 관한 연구)

  • Kim, Chung-Kyun;Oh, Kyoung-Seok
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.23-28
    • /
    • 2006
  • This paper presents the strength safety and the weight reduction analysis of nine gas valve models for a LPG cylinder using a finite element analysis program, MARC and Taguchi's experimental method. The maximum Von Mises stress of a gas valve body represents a safety of a brass valve structure for the given gas pressure of $91kg/cm^2$, which considered a safety factor of a LPG gas cylinder. The weight reduction analysis is very important for reducing a gas flow friction loss and a manufacturing cost as a design parameter. The calculated results present an design model 9 as an optimized design data with 10mm radius of a lower part gas flow pipe A, 6mm radius of an upper part gas flow pipe B and a connecting length 2 mm of tapered pipe D between lower and upper pipes.

  • PDF

Advance Probabilistic Design and Reliability-Based Design Optimization for Composite Sandwich Structure (복합재 샌드위치 구조의 개선된 확률론적 설계 및 신뢰성 기반 최적설계)

  • Lee, Seokje;Kim, In-Gul;Cho, Wooje;Shul, Changwon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Composite sandwich structure can improve the specific bending stiffness significantly and save the weight nearly 30 percent compared with the composite laminates. However, it has more inherent uncertainties of the material property caused by manufacturing process than metals. Therefore, the reliability-based probabilistic design approach is required. In this paper, the PMS(Probabilistic Margin of Safety) is calculated for the simplified fuselage structure made of composite sandwich to provide the probabilistic reasonable evidence that the classical design method based on the safety factor cannot ensure the structural safety. In this phase, the probability density function estimated by CMCS(Crude Monte-Carlo Simulation) is used. Furthermore, the RBDO(Reliability-Based Design Optimization) under the probabilistic constraint are performed, and the RBDO-MPDF(RBDO by Moving Probability Density Function) is proposed for an efficient computation. The examined results in this paper can be helpful for advanced design techniques to ensure the reliability of structures under the uncertainty and computationally inexpensive RBDO methods.

Analysis for Defect Evaluation of Pipes in Nuclear Power Plant (원전 배관의 결함 평가를 위한 해석)

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3121-3126
    • /
    • 2013
  • The integrity evaluation of pipes in nuclear power plant are essential for the safety of reactor vessel, and integrity must be assured when flaws are found. Accurate stress intensity analyses and crack growth rate data of surface-cracked components are needed for reliable prediction of their fatigue life and fracture strengths. Fatigue design and life assessment are the essential technologies to design the structures such as pipe, industrial plant equipment and so on. The effect of crack spacing on stress intensity factor K values was studied using three-dimensional finite element method (FEM). For the case of cylinder under internal pressure, a significant increase in K values observed at the deepest point of the surface crack. Also, this paper describes the fatigue analysis for cracked structures submitted to bending loads.

An Analytical Study to evaluate Existing Stress of Steel Structural Member (철골구조물의 존재응력 추정에 관한 해석적 연구)

  • Kim, Kap Sun;Shin, Eui Gyun;Kim, Woo Bum;Chung, Soo Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.301-309
    • /
    • 1999
  • The purpose of this study is to develop a method to deduce existing stress of steel member in inelastic range. Based on the previous experimental study, modified factor method considering the local plastification due to stress concentration was proposed. Finite element analysis was performed to investigate the stress distribution around hole and the results of the finite element analysis were compared with those from the Hole Drilling Method in elastic-plastic range. As a result of applying a modified factor method, proposed method shows very good approximation of 2% error for exact value of stress in the plastic range.

  • PDF

A Study on the Fatigue Test and Performance Evaluation for Linear Motion Rolling Bearing (직선운동베어링 성능평가방법의 표준화 및 내구성 시험에 관한 연구)

  • 김태범;김동길;이상조;김익수;이위로;이동규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1270-1274
    • /
    • 2003
  • The objective of this paper is to introduce the standard of evaluation methods and fatigue test for linear motion rolling bearing. In particular, attention well be given to the list of evaluation and fatigue results in this paper. The life of a linear motion rolling bearing is given by the length of distance covered between the connection parts before the first evidence of fatigue develops in the material of one of the raceways of rolling elements. The main factors that contribute to fatigue failures include: Number of load cycles experienced; Range of stress experienced in each load cycle; Mean stress experienced in each toad cycle; Presence of local stress concentrations.

  • PDF

System Reliability Analysis of Midship Sections (선체 중앙 횡단면의 시스템 신뢰성해석)

  • Y.S. Yang;Y.S. Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.115-124
    • /
    • 1993
  • A structural system reliability analysis is studied for the safety assessment of midship section. Probabilistically dominant collapse modes are generated by Element Replacement Method and Incrimental Load Method. In order to avoid generating the same modes repeatedly, it is branched at final plastic hinge. Using first and second order bound methods, system failure probability of midship section is computed and compared with deterministic load factor method to show the usefulness of the proposed method.

  • PDF

Optimum Design of a Tubular Link Chain Conveyor for Sludge Transport (슬러지 이송용 튜브형 링크체인 컨베이어의 최적설계)

  • Kim, Bong-Hwan;Jeong, Young-Jae;Lee, Chang-Ryeol
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.830-835
    • /
    • 2018
  • The tubular link chain conveyor works under very extreme conditions such as high tensile load, friction, and dangerous operating environments. In this study, we propose an optimal design plan for reducing cost and improving performance through weight reduction of tubular link chain conveyors for sludge transport. For light weight of tubular link chain conveyor, the optimization software using SHERPA algorithms, HEEDS was used in conjunction with ANSYS Mechanical V14.5, which is widely used in structural analysis, to achieve optimal tubular link chain. Through the optimization process, 19% light weight was achieved.

Determination of Nitrovin in Fishery Products by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS를 이용한 수산물 중 니트로빈의 정량분석법 개발 및 검증)

  • Kim, Joohye;Shin, Dasom;Kang, Hui-Seung;Jeong, Jiyoon;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.118-123
    • /
    • 2018
  • The objective of this study was to develop a sensitive method for the identification and determination of nitrovin in fishery products by using a solid-phase extraction (SPE), as performed with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with a mixture of acetonitrile and water, and were then defatted with acetonitrile saturated hexane, after which further clean-up was accomplished with SPE on the hydrophilic-lipophilic balance (HLB) cartridges. The analytes were subsequently ionized in the positive mode of an electrospray ionization (ESI), and where thereby detected in a process of multiple reaction monitoring (MRM). The linearity (expressed as correlation coefficients) of the matrix calibration curves was > 0.985. The limit of the quantification for the nitrovin was measured at 0.001 mg/kg. The accuracy (expressed as average recovery) was noted between 72.1 and 122%. The precision (expressed as coefficient variation) was noted from 2.9 to 16.9%. According to the CODEX CAC/GL-71 guideline accuracy, precision, linearity, and limit of detection were determined in three matrices (which were flatfish, eel and shrimp). The proposed method was suitable for analyzing the associated nitrovin residues. This application and result can also be a factor to contribute to the non-detection drugs management in fishery products.

Analysis of Agricultural Tractor Transmission using Actual Farm Workload (실부하 적용을 통한 농용 트랙터 변속기 해석)

  • Kim, Jeong-Gil;Park, Jin-Sun;Choi, Kyu-Jeong;Lee, Dong-Keun;Shin, Min-Seok;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.42-48
    • /
    • 2020
  • The agricultural tractor is a multi-purpose vehicle, which is frequently used in the agricultural field. It must be highly reliable in terms of human safety. Design and analysis of agricultural tractors must be performed using actual agricultural workload to maintain high reliability. Additionally, the frequency with which various components and systems are used must also be taken into consideration. In this study, a tractor is built to measure its workload in the actual field. Further, the measured load was analyzed for various farming tasks. The range of ratios of consumed power to engine power was measured to be 42.6%-87.2%, 75.1%-97%, 26.5%-59.2% for a plow, rotary, and harvest tasks, respectively. The results were fed into a transmission simulation model to analyze the strength and life of the transmission components. We conclude that a more reliable product can be constructed by incorporating the transmission analyses using the actual load.