• 제목/요약/키워드: 안개 검출

검색결과 32건 처리시간 0.025초

안개 제거에 의한 객체 검출 성능 향상 방법 (A Framework for Object Detection by Haze Removal)

  • 김상균;최경호;박순영
    • 전자공학회논문지
    • /
    • 제51권5호
    • /
    • pp.168-176
    • /
    • 2014
  • 영상 시퀀스로부터 움직이는 객체의 검출은 비디오 감시, 교통 모니터링 및 분석, 사람 검출 및 추적 등에서 가장 기본적이며 중요한 분야이다. 안개와 같은 환경적 요인에 의하여 화질이 저하된 영상 속에서 움직이는 객체를 검출하는 일은 매우 어렵다. 특히, 안개는 주변 물체의 색상을 모두 비슷하게 만들고 채도를 떨어뜨려 배경으로부터 객체를 구별하기 힘들게 만든다. 이런 이유로 안개 영상 속에서 객체 검출 성능은 매우 낮으며 신뢰할 수 없는 결과를 나타내고 있다. 본 논문은 안개와 같은 환경적 요인을 제거하고 객체의 검출 성능을 높이기 위한 방법으로 안개 지수를 기반으로 안개 유무를 판단하고, Dark Channel Prior을 이용하여 안개 영상의 전달량을 추정하고 안개가 제거된 영상으로 복원하였으며 가우시안 혼합 모델을 이용한 배경 차분 방법을 이용하여 객체를 검출하였다. 그리고 제안된 방법의 성능을 비교하기 위해 안개 제거 전과 후의 영상에 대한 Recall 과 Precision을 측정하여 안개 제거에 따른 성능 향상 정도를 수치화하여 비교하였다. 결과적으로 안개 제거 후 영상의 가시성이 매우 향상되었으며 객체 검출 성능이 매우 향상됨을 알 수 있었다.

미디언 필터 기반의 Retinex 알고리즘을 통한 안개 영상에서의 차선검출 기법 (Lane detection method using Median Filter based Retinex Algorithm in Foggy Image)

  • 김영탁;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권8호
    • /
    • pp.31-39
    • /
    • 2010
  • 본 논문은 도로 영상에서 안개의 존재 여부를 판단하여 미디언 필터를 기반으로 하는 Retinex 알고리즘을 적용하고 영상을 개선한 후 최종적으로 차선을 검출하는 알고리즘을 제안한다. 영상 내에서 특정 관심 영역을 지정하고 해당 영역에서의 히스토그램을 분석하여 안개의 존재 여부를 판단한다. 안개 낀 영상으로 판단되는 경우 영상의 화질개선을 위해 미디언 필터를 기반으로 하는 Retinex 알고리즘을 이용해 대비도를 향상시킨다. 기존의 Retinex 알고리즘은 가우시안 필터를 적용하기 때문에 연산에 많은 시간이 걸리며, 특히 도로의 안개 영상에서는 차선의 특징이 두드러지지 않았다. 본 논문에서는 가우시안 필터를 미디언 필터를 바꿈으로써 도로의 안개 영상에 대해서 강인한 대비도 향상 효과를 얻을 수 있었다. 개선된 영상에서 차선에 대한 정보를 획득하기 위해서 이중 임계치를 이용한 이진화를 수행하고 라벨링을 통해서 검출된 차선의 크기, 방향 등의 정보를 계산하여 최종적인 차선을 검출한다. 제안한 알고리즘의 성능은 다양한 환경의 도로를 주행하면서 획득한 연속적인 영상들에 적용함으로써 제안하는 알고리즘의 효율성 및 우수성을 평가하였다.

Retinex 알고리즘을 사용한 안개 구간에서의 차선 검출 방법 (Lane detection method using the Retinex algorithm in foggy roads)

  • 강지훈;최서혁;김창대;류성필;김동우;안재형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.376-380
    • /
    • 2015
  • 본 논문은 안개 낀 날 차선을 인식하는 방법을 제안한다. 이것은 주행 중 안개구간이 나타나면 시야확보가 어려운 운전자의 안전을 도모하고 또한 자동차 자율 주행을 가능하게 하기 위한 것이다. 제안한 방법은 먼저 입력 영상에서 화소 수 분포와 시작점으로 안개 구간인지를 판단한다. 만약 안개구간이면 Retinex 알고리즘에서 미디언 필터를 입력영상의 범위만큼 한 후 히스토그램 평활화와 정규화를 수행한다. 실험 결과 기존 연구보다 차선 검출이 정확하고 먼 거리까지 인식할 수 있었다.

  • PDF

Single Color Image의 안개 정도 측정 방법 (Single Color Image Based on Fog Degree Measurement)

  • 이근민;김원하
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.260-263
    • /
    • 2017
  • 본 논문은 single image에서 측정한 빛 전달량 값과 local contrast 값을 사용하여 안개 량을 수치화하는 방법을 제안한다. 제안하는 방법은 빛 전달량 값을 사용하여 안개로 예측되는 지역을 추정하고, 추정된 안개 예측지역의 넓이와 해당 지역의 local contrast 크기의 범위를 사용하여 안개 정도를 수치화 한다. single image에서 측정 가능한 안개 의 물리적 특성들을 고려하였기 때문에 기존의 안개 검출 알고리즘들이 구분하지 못했던 영상들에서도 안개 량을 정확하게 측정하였다. 실제 빛의 산란 정도를 측정하는 감광 계수 측정계를 사용하여 측정한 안개 량과 제안하는 방법의 수치를 비교했을 때, 다양한 환경과 물체를 포함한 영상들에서 95%이상의 정확도로 안개 정도를 수치화 하였다. 또한 빛 전달량 추정 과정에서 local contrast 값을 추출하여 사용하기 때문에 기존의 빛 전달량을 측정하는 방법에서 복잡도를 거의 증가시키지 않는다.

  • PDF

위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합 (Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images)

  • 권오설
    • 방송공학회논문지
    • /
    • 제21권2호
    • /
    • pp.272-275
    • /
    • 2016
  • 본 논문은 위성 영상을 위한 안개 제거 및 표면반사율 기반의 특징점 검출 방법을 제안한다. 기존의 안개 제거를 위한 DCP 방법은 패치 기반의 처리 방식으로 인해 전달맵 생성 과정에서 블록현상이 발생하게 되고, 이는 영상을 흐리게 하는 원인이 된다. 따라서 제안한 은닉마코프 기반의 방법은 영상의 블록 현상을 제거하고 선명도를 향상한다. 또한 표면반사율 기반의 견고한 특징점 추출을 통해서 영상 정합의 정확성을 향상하였다. 실험을 통해 제안한 방법이 기존 방법에 비해 안개 제거의 성능에서 우수함을 확인하였으며 이를 통해 특징 검출 및 위성 영상 정합에 적합함을 확인하였다.

강인한 차선검출을 위한 명암대비 향상 전처리 기법 (A Method of Contrast Improvement Preprocessing For Robust Lane Detection)

  • 김현욱;이재원;홍성훈
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.359-362
    • /
    • 2013
  • 최근 지능형 차량에 대한 관심이 늘어나면서 차선검출에 대한 관심도 많이 늘어나고 있다. 그 중에서도 실시간 적용을 위하여 연산량이 적은 허프변환을 이용한 차선검출 방법이 많이 연구되고 있다. 하지만 허프변환은 안개와 같은 열악한 환경에서와 같이 에지성분이 두드러지게 나타나지 않은 경우에 대해서는 정확한 차선검출이 어렵다는 단점을 가지고 있다. 따라서 본 논문에서는 열악한 환경의 영상에 차선의 에지를 강조하는 전처리를 수행하고 허프변환을 이용하여 차선검출을 수행하는 방식을 제시한다. 제안하는 전처리 방법은 처리 속도와 성능에서 기존의 전처리 기법과 비교하여 높은 처리속도와 차선 검출률을 보였다. 특히 안개와 같은 열악한 영상에서의 결과에서 기존의 전처리 방법보다 제안한 전처리 방법이 더 높은 검출률을 보였다.

안개 발생 시 원적외선 표면영상유속계의 적용성 검토 (Applicability of Ray Surface Image Velocimeter using Far Infrared Ray in Fog Condition)

  • 배인혁;김서준;윤병만;류권규
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.70-70
    • /
    • 2017
  • 영상처리 기법을 이용한 유속 측정 방법인 표면영상유속계는 비접촉식으로 간편하게 유속을 측정할 수 있다는 장점이 있지만 영상 내 추적자의 움직임을 식별하기 어려운 야간의 경우와 새벽의 안개가 발생하는 경우에 대한 유속 측정의 어려움이 있었다. 표면영상유속계를 이용한 야간 유속 측정은 조명과 적외선 카메라를 이용하여 수표면을 가시화하는 방법을 통해 현장 적용성을 검증하였으나, 안개 발생 상황에서는 적용하기 어렵다는 한계가 있었다. 야간과 안개 등의 한계를 동시에 극복하기 위한 방법으로 원적외선 카메라를 이용한 연구들이 이루어지고 있지만 아직 시작단계이고, 원적외선의 경우 주변 환경 변화에 따라 물체의 표면온도가 검출되는 파장이 달라져 영상의 품질에 차이가 발생하기 때문에 이에 대한 다양한 실험적 연구가 필요하다. 이에 본 연구에서는 야외 개수로에서 드라이아이스를 이용하여 안개 조건을 재현하고, 다양한 흐름 조건에서 원적외선 영상을 이용한 표면유속 측정 적용성을 검토하였다. 안개가 발생하는 경우 원적외선 표면영상 유속계를 적용한 결과 안개가 없을 때의 유속 측정 결과와 거의 일치하는 것을 확인하였다. 따라서 원적외선 카메라를 이용한 표면유속 측정 방법은 야간과 안개가 발생하는 상황에 모두 사용하기에 적합한 것을 나타났다. 향후 하천 유량조사에 원적외선 카메라를 활용한다면 기존의 표면영상유속계의 비가시 환경에 대한 한계들을 많은 부분 극복할 수 있을 것으로 기대한다.

  • PDF

안개관련 특징을 이용한 효과적인 머신러닝 기반 안개제거 기법 (Effective machine learning-based haze removal technique using haze-related features)

  • 이주희;강봉순
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.83-87
    • /
    • 2021
  • 자율주행 및 인공지능 CCTV는 안개와 같은 악조건 상황에서 주변의 사물과 사람인식에 대한 카메라의 가시성 및 검출 능력이 저하된다. 이러한 악조건 상황에서도 중요한 정보를 정확하게 얻기 위해서 안개 제거 알고리즘에 대한 연구가 필요하다. 과거부터 현재까지 안개 제거 기술은 컴퓨터 비전/ 데이터 기반 등 다양한 방법을 이용한 연구가 진행되고 있다. 안개 제거 기술 중에서 입력영상에 대한 깊이 정보를 통한 안개 전달량을 추정하는 방법이 중요하다. 본 논문에서는 영상의 특징 DCP, saturation∗value, sharpness가 깊이정보와 선형관계에 있다는 가정을 통해 선형모델을 제시한다. 제안한 선형모델을 통한 안개제거방법은 기존의 방법들과 정량적 수치평가에서 평균적으로 10% 향상된 결과를 보여주며 알고리즘의 성능의 우수성을 증명하였다.

Local Contrast와 빛 전달량 기반 Single Image의 안개 정도 측정 방법 (Local contrast and Transmission Based Fog Degree Measurement in Single Image)

  • 이근만;김원하
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.375-380
    • /
    • 2017
  • 본 논문은 single image에서 측정한 빛 전달량 값과 local contrast 값을 사용하여 안개 량을 수치화하는 방법을 제안한다. 제안하는 방법은 빛 전달량 값을 사용하여 안개로 예측되는 지역을 추정하고, 추정된 안개 예측 지역의 넓이와 해당 지역의 local contrast 크기의 범위를 사용하여 안개 정도를 수치화 한다. single image에서 측정 가능한 안개 의 물리적 특성들을 고려하였기 때문에 기존의 안개 검출 알고리즘들이 구분하지 못했던 영상들에서도 안개 량을 정확하게 측정하였다. 실제 빛의 산란 정도를 측정하는 감광 계수 측정계를 사용하여 측정한 안개 량과 제안하는 방법의 수치를 비교했을 때, 다양한 환경과 물체를 포함한 영상들에서 95%이상의 정확도로 안개 정도를 수치화 하였다. 또한 빛 전달량 추정 과정에서 local contrast 값을 추출하여 사용하기 때문에 기존의 빛 전달량을 측정하는 방법에서 복잡도를 거의 증가시키지 않는다.

싱글 야외 영상에서 계층적 이미지 트리 모델과 k-평균 세분화를 이용한 날씨 분류와 안개 검출 (Weather Classification and Fog Detection using Hierarchical Image Tree Model and k-mean Segmentation in Single Outdoor Image)

  • 박기홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권8호
    • /
    • pp.1635-1640
    • /
    • 2017
  • 본 논문에서는 싱글 야외 영상에서 날씨 분류를 위한 계층적 이미지 트리 모델을 정의하고, 영상의 밝기와 k-평균 세분화 영상을 이용한 날씨 분류 알고리즘을 제안하였다. 계층적 이미지 트리 모델의 첫 번째 레벨에서 실내와 야외 영상을 구분하고, 두 번째 레벨에서는 야외 영상이 주간, 야간 또는 일출/일몰 영상인지를 밝기 영상과 k-평균 세분화 영상을 이용하여 판단하였다. 마지막 레벨에서는 두 번째 레벨에서 주간 영상으로 분류된 경우 에지 맵과 안개 율을 기반으로 맑은 영상 또는 안개 영상인지를 최종 추정하였다. 실험 결과, 날씨 분류가 설계 규격대로 수행됨을 확인할 수 있었으며, 제안하는 방법이 주어진 영상에서 효과적으로 날씨 특징이 검출됨을 보였다.