Proceedings of the Korea Information Processing Society Conference
/
2014.11a
/
pp.905-908
/
2014
악성댓글은 인터넷 상에서 상대방이 올린 글에 대한 비방, 험담 등을 하는 악의적인 댓글을 의미한다. 사용자에게 스마트 모바일 기기, 소셜 네트워크 서비스 등의 편리한 서비스를 제공함에 따라 악성댓글에 대한 피해도 꾸준히 증가하고 있다. 본 논문에서 제안하는 방법은 댓글로부터 간단한 형태소 분석과 패턴 추출 과정을 거쳐 단어장을 형성한다. 단어장을 바탕으로 댓글에 포함된 단어가 악성댓글과 비악성댓글에서 나타날 확률을 구하고 이를 기반으로 주어진 댓글이 악성댓글인지 아닌지를 판별한다. 실험결과를 통하여 본 논문에서 제안하는 악성댓글을 판별하는 방법을 평가한다.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.257-259
/
2018
모바일 환경이 발전함에 따라 기존 PC 환경에서의 보안 위협이 모바일 환경으로 옮겨 짐으로써, 기존 PC 환경에서 발생하던 악성 광고 인젝션 또한 모바일 환경으로 옮겨져 가고 있다. 악성 광고 인젝션은 컨텐츠 제공자에게 정당한 광고의 노출을 방해함으로써 수익 창출을 방해하고, 사용자에게는 원치 않는 광고로 인해 불편함을 야기한다. 이러한 모바일 환경에서의 악성 광고 인젝션을 막기 위해 몇 가지 연구가 진행되었지만 아직 악성 광고 인젝션 앱의 특징에 대한 연구가 미비하다. 따라서, 본 논문에서는 GPC(Google Play Crawler)를 통해 선별한 앱들 중 실제로 악성 광고 인젝션을 수행하는 앱들을 분석하여 악성 광고 앱들의 특징을 도출해 내고, 도출된 특징의 활용 방안에 대해 서술한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06c
/
pp.280-282
/
2012
스마트폰 사용자가 증가함에 따라 스마트폰 사용자를 노리는 악성코드 또한 증가하고 있다. 국내의 다양한 스마트폰 운영체제 중 특히 안드로이드의 경우 오픈소스 정책 및 다양한 기기의 보급을 통해 사용자가 증가함에 따라 악성코드 또한 증가하고 있다. 현재 대부분의 악성코드 탐지 프로그램의 경우 위변조 혹은 새로운 악성코드에 대응이 어렵다는 문제점이 존재한다. 이에 본 논문에서는 행위기반 탐지 및 머신러닝 기법 적용을 통한 악성코드 탐지 방법을 제시하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.683-685
/
2015
이메일 등 외부로부터 유입된 악성코드로 인해 기업환경 사용자들의 피해 사례가 증가하고 있다. 대다수 기업환경 사용자들은 시그니처 기반의 안티바이러스를 설치하여 사용하고 있지만 신종 악성코드에 대한 대응률은 낮다. 또, 신종 악성코드 샘플을 수집하더라도 분석하고 시그니처 데이터베이스에 적용하는데 많은 시간이 소요되어 반영되기 전까지 사용자는 신종 악성코드를 진단하지 못하는 취약점을 가지게 된다. 최근 클라우드컴퓨팅 기술이 활성화되면서 안티바이러스에 응용하여 적용하고 있다. 방대한 데이터베이스 및 빠른 질의응답을 토대로 클라우드 기반의 안티바이러스는 시그니처 기반의 안티바이러스를 대체할 기술로 떠오르고 있다. 본 논문은 클라우드컴퓨팅 기술을 이용한 안티바이러스를 기업 환경에 적용하여 효율적으로 악성코드 대응을 할 수 있도록 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.865-866
/
2015
스마트폰은 주로 사용되고 있는 안드로이드 OS는 다양한 악성코드로 인해 금전적 피해, 데이터 유출 및 통제권한 상실 등과 같은 많은 피해를 당하고 있다. 침해 위협을 가중시키고 있는 모바일 악성코드 중 심각한 피해를 유발하는 커널 기반의 루팅(Rooting) 악성코드는 일반적인 탐지 방법으로는 찾아낼 수 없는 어려움이 있다. 본 논문에서는 커널 기반에서 동작하는 루팅(Rooting) 악성코드를 탐지하기 위한 방법을 제안한다. 스마트폰 어플리케이션이 실행될 때마다 생성되는 모든 프로세스의 UID를 확인하여 비정상적으로 사용자(User) 권한에서 관리자(Root) 권한으로 변환되는지를 확인하는 방법이다. 제안하는 방법을 활용하여 알려지지 않은 악성코드로 인한 안드로이드 OS의 피해를 최소화할 수 있을 것으로 기대된다.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.533-536
/
2012
인터넷의 급격한 성장과 함께 컴퓨터 통신 이용률이 폭발적으로 증가함에 따라 여러 악성코드가 등장하게 되었다. 이러한 악성코드는 시스템의 비정상 동작 유발, 네트워크 성능 저하, 개인정보유출의 문제를 발생시킨다. 현재의 악성코드 분석은 Signature 분석이 대부분이며, Signature 분석은 특정 패턴의 악성코드는 빠르게 탐지하나, 변조된 코드는 탐지하지 못하며, 이미 피해가 널리 퍼진 뒤 분석 및 차단이 가능하다는 단점을 가진다. 따라서 본 논문은 NDIS(Network Driver Interface Specification)를 이용하여 악성코드에 대해 수동적인 Signature 분석의 단점을 보완 하는 시스템 및 네트워크 상태 분석모델을 제시 하여 보다 능동적인 탐지 및 차단 프로세스를 정의하고, 모델 구현을 위한 방법을 제시한다.
안드로이드 모바일 환경에서 사용되는 애플리케이션은 사용자에게 여러 권한을 요구하며, 특정한 기능을 수행한다. 공격자는 정상적인 애플리케이션으로 가장한 악성 애플리케이션을 사용자가 다운로드 하도록 유도하여 금융정보 및 개인정보를 탈취할 수 있다. 기존의 모바일 백신은 시그니처(signature) 기반의 악성 애플리케이션 탐지 방법을 사용하기 때문에 정상 애플리케이션으로 가장한 악성 애플리케이션의 탐지가 어려운 측면이 있다. 따라서, 본 논문에서는 안드로이드 악성 애플리케이션 탐지율 향상을 위한 특성(feature)을 연구 및 분석하고, 여러 기계학습 모델을 적용하여 최종적으로는 기존의 모바일 백신으로는 탐지가 어려운 악성 애플리케이션까지 탐지가 가능한 기계학습 모델을 제안하였다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.771-773
/
2013
모바일 단말은 다양한 서비스와 컨텐츠를 지원하지만, 최근 모바일 악성코드의 급증으로 인하여 사용자에게 개인 정보 유출, 요금 과다 등의 피해를 초래하고 있다. 특히, 안드로이드 플랫폼은 오픈 플랫폼으로서 공격자들이 악성코드를 배포하기에 유리한 환경을 가지고 있어 시그니처/행위기반 분석방법을 통한 악성코드 탐지 연구가 활발히 진행되고 있다. 본 논문에서는 안드로이드 플랫폼에서 악성코드를 탐지하기 위한 Feature를 선정하였다. 또한 SVM(Support Vector Machine) 기계학습 알고리즘을 통하여 악성코드 탐지성능을 분석하고 우수성을 검증하였다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.871-874
/
2013
기존 PC에서 발생되는 악성코드가 안드로이드 모바일 플랫폼에서 스미싱 어플리케이션으로 급증하고 있다. 스마트 폰 사용자는 SMS에 의해 악성코드를 설치하게 되며, 악성코드가 소액결제 서비스 인증번호를 가로채어 C&C 서버 등으로 송신함으로써 30 만원 이내의 금전적 손해를 일으키게 된다. 본 논문에서는 GCM(Google Cloud Messaging)과 MDM(Mobile Device Management)을 이용하여 사용자의 스마트 폰에서 동작하고 있는 악성 어플리케이션을 탐지하고, 악성 행위를 통제시키며 사용자로부터 직접 어플리케이션을 삭제하길 권하는 시스템을 설계하여 제안하고자 한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.751-753
/
2013
안드로이드 플랫폼은 타 모바일 플랫폼보다 보안에 있어서 더 많은 취약점을 안고 있다. 따라서 현재 발생하고 있는 대부분의 모바일 악성코드는 안드로이드 플랫폼에서 발생하고 있다. 현재 악성코드 탐지 기법 중 기계학습을 도입한 방법은 변종 악성코드의 대처에 유연하다. 하지만 기계학습기법은 불필요한 Feature를 학습데이터로 사용할 경우, 오버피팅이 발생하여 전체적인 성능을 저하시킬 수 있다. 본 논문에서는 안드로이드 플랫폼에서 발생하는 리소스를 모니터링하여 Feature vector를 생성하고, Feature-selection 알고리즘을 통하여 Feature의 수에 따라 기계학습 Classifier를 통한 악성코드 탐지의 성능지표를 보인다. 이를 통하여, 기계학습을 통한 악성코드 탐지에서 Feature-selection의 필요성과 중요성을 설명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.