본 논문은 악성코드의 이미지화와 전이학습을 이용한 악성코드 분류 방안을 제안한다. 공개된 악성코드는 쉽게 재사용 또는 변형이 가능하다. 그런데 전통적인 악성코드 탐지 기법은 변형된 악성코드를 탐지하는데 취약하다. 동일한 부류에 속하는 악성코드들은 서로 유사한 이미지로 변환된다. 따라서 제안하는 기법은 악성코드를 이미지화하고 이미지 분류 분야에서 검증된 딥러닝 모델을 사용하여 악성코드의 부류를 분류한다. Malimg 데이터셋에 대해 VGG-16 모델을 이용하여 실험한 결과 98% 이상의 분류 정확도를 나타냈다.
인터넷의 발달로 많은 편리와 이익을 얻었지만 반대로 지능화되는 악성코드로 인하여 사용자의 경제적, 사회적 피해를 주고 있다. 이를 탐지하고 방어하기 위해 대부분 시그니처 기반의 탐지나 방어 프로그램을 사용하지만 지능화된 악성코드의 변종을 막기에는 매우 어렵다. 따라서 본 논문에서는 쏟아져 나오는 지능화된 악성코드를 탐지하고 방어할 수 있는 모델을 제안한다. 제안 모델은 악성코드의 특성을 이미지화하여 딥러닝을 이용한 학습을 통해 만들어지며 새롭게 탐지된 악성코드와 악성코드 변종들은 이미지화를 수행한 다음 만들어진 모델에 적용하여 탐지한다. 제안된 모델을 사용하면 기존에 탐지되었던 악성코드와 더불어 유사한 변종도 대부분 탐지됨을 알 수 있다.
최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.
최근 기계학습의 발달로 인공지능을 구현하는 머신러닝과 딥러닝 같은 기술이 많은 관심을 받고 있다. 본 논문에서는 딥러닝 기반의 R-CNN을 이용한 바이너리 악성코드를 이미지화 하고 이미지에서 특징을 추출해 패밀리를 분류한다. 본 논문에서는 딥러닝에서 두 단계를 이용해 악성코드를 CNN을 이용해 이미지화하고, 악성코드의 패밀리가 갖는 특징을 R-CNN을 이용해 분류함으로 악성코드를 이미지화하여 특징을 분류하고 패밀리를 분류한 후 악성코드의 진화를 자동 분류한다. 제안 기법은 검출율이 93.4%로 우수한 탐지 성능을 보였고 정확도는 98.6%로 매우 높은 성능을 보였다. 또한 악성코드를 이미지화 하는 CNN 처리속도가 23.3ms, 하나의 샘플을 분류하기 위해서 R-CNN처리 속도는 4ms로 비교적 빠르게 악성코드를 판별하고 분류가 가능함을 실험을 통해 증명하였다.
본 논문에서는 딥러닝의 CNN(Convolution Neural Network) 학습을 통하여 악성코드를 실행시키지 않고서 악성코드 변종을 패밀리 그룹으로 분류하는 방법을 연구한다. 먼저 데이터 전처리를 통해 3가지의 서로 다른 방법으로 악성코드 이미지와 메타데이터를 생성하고 이를 CNN으로 학습시킨다. 첫째, 악성코드의 byte 파일을 8비트 gray-scale 이미지로 시각화하는 방법이다. 둘째, 악성코드 asm 파일의 opcode sequence 정보를 추출하고 이를 이미지로 변환하는 방법이다. 셋째, 악성코드 이미지와 메타데이터를 결합하여 분류에 적용하는 방법이다. 이미지 특징 추출을 위해서는 본고에서 제안한 CNN을 통한 학습 방식과 더불어 3개의 Pre-trained된 CNN 모델을 (InceptionV3, Densnet, Resnet-50) 사용하여 전이학습을 진행한다. 전이학습 시에는 마지막 분류 레이어층에서 본 논문에서 선택한 데이터셋에 대해서만 학습하도록 파인튜닝하였다. 결과적으로 가공된 악성코드 데이터를 적용하여 9개의 악성코드 패밀리로 분류하고 예측 정확도를 측정해 비교 분석한다.
랜섬웨어를 포함한 악성코드를 빠르게 탐지하여 빅데이터를 보호하기 위해 본 연구에서는 인공지능의 딥러닝으로 학습된 이미지 분석을 통한 악성코드 분석 기법을 제안한다. 우선 악성코드들에서 일반적으로 사용하는 2,400여개 이상의 데이터를 분석하여 인공신경망 Convolutional neural network 으로 학습하고 데이터를 이미지화 하였다. 추상화된 이미지 그래프로 변환하고 부분 그래프를 추출하여 악성코드가 나타내는 집합을 정리하였다. 제안한 논문에서 추출된 부분 집합들 간의 비교 분석을 통해 해당 악성코드들이 얼마나 유사한지를 실험으로 분석하였으며 학습을 통한 방법을 이용하여 빠르게 추출하였다. 실험결과로부터 인공지능의 딥러닝을 이용한 정확한 악성코드 탐지 가능성과 악성코드를 이미지화하여 분류함으로써 더욱 빠르고 정확한 탐지 가능성을 보였다.
본 논문에서는 악성코드를 실행시키지 않고 패밀리를 분류하는 방법으로 악성 코드 파일을 8-bit gray-scale 이미지로 시각화 하고 이미지 인식분야에서 널리 쓰이고 있는 convolutional neural network를 통해 악성코드를 분류해내는 기법을 제안한다. 9개의 악성코드 패밀리로 분류해 내는 실험의 Top-1,2 예측 정확도는 각각 96.2%, 98.7%을 기록하였고, 27개의 패밀리를 분류하는 실험의 경우 Top-1 예측 정확도는 82.9%, Top-2는 89%로 악성코드 패밀리를 분류할 수 있다.
최근 IT 산업의 지속적인 발전으로 사용자들을 위협하는 악성코드, 피싱, 랜섬웨어와 같은 사이버 공격 또한 계속해서 발전하고 더 지능화되고 있으며 변종 악성코드도 기하급수적으로 늘어나고 있다. 지금까지의 시그니처 패턴 기반의 탐지법으로는 이러한 방대한 양의 알려지지 않은 악성코드를 탐지할 수 없다. 따라서 CNN(Convolutional Neural Network)을 활용하여 악성코드를 탐지하는 기법들이 제안되고 있다. 이에 본 논문에서는 CNN 모델 중 낮은 인식 오류율을 지닌 모델을 선정하여 정확도(Accuracy)와 F1-score 평가 지표를 통해 비교하고자 한다. 두 가지의 악성코드 이미지화 방법을 사용하였으며, 2015 년 이후 ILSVRC 에서 우승을 차지한 모델들과, 추가로 2019 년에 발표된 EfficientNet 을 사용하여 악성코드 이미지를 분류하였다. 그 결과 2 바이트를 한 쌍의 좌표로 변환하여 생성한 256 * 256 크기의 악성코드 이미지를 ResNet-152 모델을 이용해 분류하는 것이 우수한 성능을 보임을 실험적으로 확인하였다.
정보통신 기술이 발전함에 따라 악의적인 공격을 통해 보안문제를 발생시키고 있다. 또한 새로운 악성코드가 유포되어 기존의 시그니처 비교방식은 새롭게 발생하는 악성코드를 빠르게 분석 할 수 없다. 새로운 악성코드를 빠르게 분석하고 방어기법을 제안하기 위해 악성코드의 패밀리를 분류할 필요가 있다. 본 논문에서는 악성코드의 바이너리 파일을 이용해 시각화하고 CNN모델을 통해 분류한다. 또한 정확도를 높이기 위해 LBP, HOG를 통해 악성코드 이미지에서 중요한 특성을 찾고 데이터 클래스 불균형에서 오는 문제를 앙상블 모델을 통해 해결하는 시스템을 제안한다.
머신러닝 기법을 다양한 분야에 사용되는 연구가 한창이다. 본 논문에서는 악성 코드의 분류 시스템에 머신러닝 기법을 적용하였다. 악성 코드 파일을 적당한 크기로 이미지화하여 텐서 플로우의 인셉션 V3에 적용하였다. 실험 결과, 이미지의 사이즈 조정과 파라미터 조정을 통해 매우 만족할 만한 수준으로 악성 코드를 잘 분류함을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.