• Title/Summary/Keyword: 아티팩트

Search Result 108, Processing Time 0.019 seconds

Classification of DJI Drones Based on Flight Log Decryption Method (비행 로그 복호화 방식에 따른 DJI 드론 분류)

  • Lee, Youngwoo;Kim, Juhwan;Yu, Jihyeon;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.1
    • /
    • pp.77-88
    • /
    • 2022
  • With the development and popularization of drone manufacturing technology, the drone market, which was mainly focused on industry, agriculture, and military, is also showing great growth in individual and commercial markets. Among them, DJI has a high share in the personal and commercial drone market, and accordingly, forensic analysis of DJI drones is drawing attention. In particular, when stealing and analyzing drones used in criminal acts, a technology to interpret flight logs recording drone flight paths and hardware information is needed, which inevitably applies drone models due to differences in decryption methods. Therefore, when an unidentified drone is acquired from the perspective of a digital forensic investigator, a clear classification of a drone model to which analysis can be applied is required. This paper proposes a method of extracting and analyzing artifacts of DJI drones through forensics, and analyzes media data analysis and flight log analysis results and decryption methods for three drone models with different release years of DJI. Finally, drones in the DJI product line are classified according to whether the commercialized DJI drone flight log is decrypted.

Raw Sensor Single Image Super Resolution Using Color Corrector-Attention Network (코렉터 어텐션 네트워크을 이용한 로우 센서 영상 초해상화 기법)

  • Paul Shin;Teaha Kim;Yeejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • In this paper, we propose a super resolution network for raw sensor image which data size is lower comparatively to RGB image. But the actual capabilities of raw image super resolution depends on color correction because its absent of camera post processing that leads to unintended result having different white balance, saturation, etc. Thus, we introduce novel color corrector attention network by adopting the idea of precedent raw super resolution research, and tune to the our faced problem from data specification. The result is not superior to former researches but shows decent output on certain performance matrix. In the same time, we encounter new challenging problem of unexpected shadowing artifact around image objects that cause performance declination despite its good result overall. This problem remains a task to be solved in the future research.

Comparative analysis of the deep-learning-based super-resolution methods for generating high-resolution texture maps (고해상도 텍스처 맵 생성을 위한 딥러닝 기반 초해상도 기법들의 비교 분석 연구)

  • Hyeju Kim;Jah-Ho Nah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.5
    • /
    • pp.31-40
    • /
    • 2023
  • As display resolution increases, many apps also tend to include high-resolution texture maps. Recent advancements in deep-learning-based image super-resolution techniques make it possible to automate high-resolution texture generation. However, there is still a lack of comprehensive analysis of the application of these techniques to texture maps. In this paper, we selected three recent super-resolution techniques, namely BSRGAN, Real-ESRGAN, and SwinIR (classical and real-world image SR), and applied them to upscale texture maps. We then conducted a quantitative and qualitative analysis of the experimental results. The findings revealed various artifacts after upscaling, which indicates that there are still limitations in directly applying super-resolution techniques to texture-map upscaling.

A Study on the Crime Investigation of Anonymity-Driven Blockchain Forensics (익명 네트워크 기반 블록체인 범죄 수사방안 연구)

  • Han, Chae-Rim;Kim, Hak-Kyong
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.45-55
    • /
    • 2023
  • With the widespread use of digital devices, anonymous communication technologies such as the dark web and deep web are becoming increasingly popular for criminal activity. Because these technologies leave little local data on the device, they are difficult to track using conventional crime investigation techniques. The United States and the United Kingdom have enacted laws and developed systems to address this issue, but South Korea has not yet taken any significant steps. This paper proposes a new blockchain-based crime investigation method that uses physical memory data analysis to track the behavior of anonymous network users. The proposed method minimizes infringement of basic rights by only collecting physical memory data from the device of the suspected user and storing the tracking information on a blockchain, which is tamper-proof and transparent. The paper evaluates the effectiveness of the proposed method using a simulation environment and finds that it can track the behavior of dark website users with a residual rate of 77.2%.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

A Study on Dose Reduction in Infant Skull Radiography (유아 두개골 방사선촬영에서 피폭선량 감쇄에 관한 연구)

  • Ahn, Byoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.387-392
    • /
    • 2017
  • When an infant has visited a hospital due to skull fracture, the rupture of a blood vessel, or skin wounds on the head resulted from an incident, accident, traffic accident, or disease, he/she becomes to undergo anterior/posterior and lateral skull imaging, which is a head test at the department of radiology. In the head test, if the adult skull imaging grid is applied to the imaging, the secondary radiation will be removed to enhance the contrast of the image. However, among the radiation exposure conditions, the tube voltage should be enhanced by 8~10 kVp leading to an increase in the patient exposure. The present study was conducted under assumption that if the same images can be obtained from infant skull imaging without using the skull imaging grid, the exposure dose will be reduced and the artifacts due to grid cut off can be prevented. The researcher measured the radiation dosage using a radiation meter and conducted the subjective evaluation (ROC, receiver operating characteristic) among medical image evaluation methods. Based on the results, when the images were taken without using the grid, the exposure dose was reduced by 0.019 mGy in the anterior/posterior imaging and by 0.02 mGy in the lateral imaging and the image evaluation score was higher by 4 points. In conclusion, if the images of the skulls of infants that visited the hospital are taken with out using the grid, the exposure dose can be reduced, the image artifacts due to grid cut off can be prevented, and the lifespan of the X-ray tube will be extended.

Joint Demosaicking and Arbitrary-ratio Down Sampling Algorithm for Color Filter Array Image (컬러 필터 어레이 영상에 대한 공동의 컬러보간과 임의 배율 다운샘플링 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.68-74
    • /
    • 2017
  • This paper presents a joint demosaicking and arbitrary-ratio down sampling algorithm for color filter array (CFA) images. Color demosaiking is a necessary part of image signal processing pipeline for many types of digital image recording system using single sensor. Also, such as smart phone, obtained high resolution image from image sensor has to be down-sampled to be displayed on the screen. The conventional solution is "Demosaicking first and down sampling later". However, this scheme requires a significant amount of memory and computational cost. Also, artifacts can be introduced or details get damaged during demosaicking and down sampling process. In this paper, we propose a method in which demosaicking and down sampling are working simultaneously. We use inverse mapping of Bayer CFA and then joint demosaicking and down sampling with arbitrary-ratio scheme based on signal decomposition of high and low frequency component in input data. Experimental results show that our proposed algorithm has better image quality performance and much less computational cost than those of conventional solution.

Comparison Study on Projection and Backprojection Methods for CT Simulation (투사 및 역투사 방법에 따른 컴퓨터단층촬영 영상 비교)

  • Oh, Ohsung;Lee, Seung Wook
    • Journal of radiological science and technology
    • /
    • v.37 no.4
    • /
    • pp.323-330
    • /
    • 2014
  • Image reconstruction is one of the most important processes in CT (Computed tomography) technology. For fast scanning and low dose to the objects, iterative reconstruction is becoming more and more important. In the implementation of iterative reconstruction, projection and backprojection processes are considered to be indispensable parts. However, many approaches for projection and backprojection may result severe image artifacts due to their discrete characteristics and affects the reconstructed image quality. Thus, new approaches for projection and backprojection are highly demanded these days. In this paper, distance-driven approach was evaluated and compared with other conventional methods. The numerical simulator was developed to make the phantoms, and projection and backprojection images were compared using these approaches. As a result, it turned out that there are less artifacts during projection and backprojection in parallel and fan beam geometry.

Digital Forensic Investigation of HBase (HBase에 대한 디지털 포렌식 조사 기법 연구)

  • Park, Aran;Jeong, Doowon;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.2
    • /
    • pp.95-104
    • /
    • 2017
  • As the technology in smart device is growing and Social Network Services(SNS) are becoming more common, the data which is difficult to be processed by existing RDBMS are increasing. As a result of this, NoSQL databases are getting popular as an alternative for processing massive and unstructured data generated in real time. The demand for the technique of digital investigation of NoSQL databases is increasing as the businesses introducing NoSQL database in their system are increasing, although the technique of digital investigation of databases has been researched centered on RDMBS. New techniques of digital forensic investigation are needed as NoSQL Database has no schema to normalize and the storage method differs depending on the type of database and operation environment. Research on document-based database of NoSQL has been done but it is not applicable as itself to other types of NoSQL Database. Therefore, the way of operation and data model, grasp of operation environment, collection and analysis of artifacts and recovery technique of deleted data in HBase which is a NoSQL column-based database are presented in this paper. Also the proposed technique of digital forensic investigation to HBase is verified by an experimental scenario.