• Title/Summary/Keyword: 아크센서

Search Result 90, Processing Time 0.022 seconds

Gas sensing characteristics of SWNT(single walled carbon nanotube) sheet (탄소나노튜브의 가스 감응 특성)

  • 김민주;이상태;전희권;허증수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.136-136
    • /
    • 2003
  • 카본나노튜브는 상용되는 기존의 센서에 비해 표면적이 넓어 감도가 놀고 응답속도가 빠르다. 또한 나노 스케일의 크기를 가지므로 고직접화를 실현할 수 있으며 기능복구성이 뛰어나 상온동작을 통한 저전력화가 가능하다. 본 실험에서는 아크방전법으로 합성한 카본나노튜브를 가스센서로 제작하여 상온에서 NH$_3$, NO 가스와의 반응 특성을 평가하였다. 또한 origin soot와 이를 정제한 purified CNT를 SEM(주사전자현미경), TEM(투과전자현미경), Raman scattering spectroscopy(라만 산란 분광기)를 통해 재료적 특성을 조사하고 이를 가스 감응 곡선과 연관하여 비교, 분석하였다. 전극에 CNT막을 형성시키기 위해 3g의 N,N dimethylformamide 용액에 CNT 10mg을 분산시킨 후 2시간동안 초음파 처리하였다. 이 용액을 mask를 이용해 전극 위에 막을 형성시킨 후 20$0^{\circ}C$에서 열처리하였다. 이렇게 제조된 origin soot와 purified CNT센서는 flow system을 이용하여 측정하였고 $N_2$분위기 하에서 센서를 안정화시킨 후 측정가스와의 반응을 살펴보았다 센서의 반응속도, 회복속도, 감도 등의 측정결과 origin soot는 NH$_3$ 25ppm에서 20%, purified CNT는 1%의 감도를 보여 20배 높은 감도를 보았다. NO 25ppm의 경우에도 origin soot가 8%, purified CNT는 0.8%의 감도를 보여 10배 높은 감도를 보였다. 이는 탄소입자가 많은 origin soot가 purified CNT 보다 표면적이 넓어 보다 많은 가스 흡착 싸이트를 가지기 때문이다. 하지만 origin soot는 반응시간과 회복속도가 Purified CNT 보다 2배 이상 느려 표면적 증가에 따른 가스 흡착과 탈착 능력이 떨어짐을 알 수 있었다. 또한 CNT와 가스사이의 전하 이동 방향에 따라 NH$_3$는 양의 감도를 NO는 음의 감도를 보였다 이는 전하의 이동 방향에 따라 전하와 캐리어 사이의 결합 및 해리가 일어나게 되고 결국 카본나노튜브 내의 캐리어 수를 증감시킴에 따라 나타나는 현상이다. 이러한 가스의 감도는 농도에 따라 증가하였으며 origin soot를 이용하여 1ppm이하의 NH$_3$ 가스를 검출할 수 있었다.

  • PDF

Fundamental Study on the Maintenance Technology for SF6 Gas Condition using Pressure and UHF Sensors (UHF 및 가스센서를 이용한 SF6 가스 상태 감시기술 기초연구)

  • Ahn, Hee-Sung;Cho, Sung-Chul;Eom, Ju-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.20-27
    • /
    • 2007
  • [ $SF_6$ ] gas for compacted power facilities has a important role as an insulation gas. It is very blown well that $SF_6$ gas has the superior characteristics as an insulation gas. For reliable operation of SF6-gas-based high and medium voltage equipment it is very important to keep the insulation ability within a safe range. And the experimental and measuring system were implemented. The test chamber designed to endure up to 3 atmospheric pressure. The analysis results of the experimental data shows that positive partial discharge can be detected by discharge current and UHF signal. Additionally it is shown the possibility that $CO_2$ gas sensor of semiconductor type can be detect the variation of $SF_6$ gas condition. The UHF sensor shows good feature to detect the variation of $SF_6$ gas condition for partial discharge and breakdown discharge.

Method for Locating Arc-events by Utilizing Transmission Loss of Plastic Optical Fiber (플라스틱 광섬유의 손실 특성을 활용한 아크플래시 위치추적 방법)

  • Jeong, Hoonil;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup;Kim, Myoung Jin
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.280-284
    • /
    • 2016
  • For an arc-flash protection system, the selection of arc-flash sensor in implementation is largely dependent on the coverage area and the spatial resolution. Typically, a point sensor is used to accurately measure an arc event within a very narrow region; whereas, a loop or a line sensor can cover several electrical compartment at the same time, but with a poor resolution. In this work, a novel scheme for an arc-flash sensor was developed by making use of the transmission loss of plastic optical fibers (POFs) to cover a broad range with a high spatial resolution. By relating the amplitude ratio of the arc-signals at the ends of the POF with the arc-location, arc events could be located with a resolution of ~5 cm within a spatial range of 10 m, which has not been reported yet.

Development of a vision sensor for measuring the weld groove parameters in arc welding process (자동 아크 용접공정의 용접개선변수 측정을 위한 시각 시스템)

  • 김호학;부광석;조형석
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.58-69
    • /
    • 1990
  • In conventional arc welding, position error of the weld torch with respect to the weld seam and variation of groove dimension are induced by inaccurate fitup and fixturing. In this study, a vision system has been developed to recognize and compensate the position error and dimensional inaccuracy. The system uses a structured laser light illuminated on the weld groove and perceived by a C.C.D camera. A new algorithm to detect the edge of the reflected laser light is introduced for real time processing. The developed system was applied to arbitarary weld paths with various types of joint in arc welding process. The experimental results show that the proposed system can detect the weld groove parameters within good accuracy and yield good tracking performance.

  • PDF

Process Automation of Gas Metal Arc Welding Using Artificial Neural Network (인공신경회로망을 이용한 GMA 용접의 공정자동화)

  • 조만호;양상민;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.558-561
    • /
    • 2002
  • A CCD camera with a laser strip was applied to realize the automation of welding Process in GMAW. It takes relatively long time to process image on-line control using the basic Hough transformation, but it has a tendency of robustness over the noise such spatter and arc light. The adaptive Hough transformation was used to extract the laser stripe and to obtain specific weld points In this study, a neural network based on the generalized delta rule algorithm was adapted for the process control of GMA, such as welding speed, arc voltage and wire feeding speed.

  • PDF

Monitoring of the GMAW Process Using Infra-red Sensor (적외선 센서를 이용한 금속아크 용접 공정 모니터링)

  • 정영재;김일수;박창언;김수광
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.142-144
    • /
    • 1996
  • This paper discusses the application of infra-red thermography in monitoring the robotic arc welding process, and it's potential for weld bead dimension and seam tracking control. Thermal images illustrating weld pool formation dynamics and heat distribution phenomena are digitized and their characteristics are measured. At each sampling point the maximum depth of penetration is recorded together with additional information regarding weld bead placement in relation to the seam location. Deficiencies such as incomplete penetration and lack of side wall fusion are readily identified and can be remained during the process. The technique can help an increase in productivity and weld quality by minimizing the amount of post process rework and inspection efforts needed otherwise.

  • PDF

Implementation of the Arc Detection Device Using IR Sensor (IR 센서를 이용한 아크 발생 검출 장치 구현)

  • Hyun, Deuk-Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.258-262
    • /
    • 2017
  • Recently energy consumption has been increasing because of advances in the industry, and electrical fires have accounted for 31.9% of all fire accidents. An electrical fire is caused by a short circuit, power surge, or poor contact. Safety devices for short circuits or power surges are currently mandatory and can actually detect problems, but arcing caused by contact failure is difficult to detect in advance. This study used an IR sensor to detect the heat concentration caused by the arc. The data from the low-resolution sensor was amplified as much as four times by interpolation to find the exact location of the heat source and were then investigated.

Design of Control a Algorithm for Arc Fault Current without Current Sensor (센서없는 아크고장전류 제어 알고리즘 설계)

  • Ban, Gi-Jong;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.255-260
    • /
    • 2006
  • Arc Fault Current is an which occurrs in two opposite electrode. In this paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc is one of the main causes of electric fire. General arc current sensor has troubles for detecting arc currents, thus we would like to propose the arc current detection method without current sensor. In this parer, arc discharge currents within power lines are being detected through the arc current control algorithm.

Development of a Wall-climbing Welding Robot for Draft Mark on the Curved Surface (선수미 흘수마크 용접을 위한 벽면이동로봇 개발)

  • Lee, Jae-Chang;Kim, Ho-Gu;Kim, Se-Hwan;Ryu, Sin-Wook
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.112-121
    • /
    • 2006
  • The vertical displacement of a ship on the basis of the sea level is an important parameter for its stability and control. To indicate the displacement on operating conditions, "draft marks" are carved on the hull of the ship in various ways. One of the methods is welding. The position, shape and size of the marks are specified on the shipbuilding rules by classification societies to be checked by shipbuilders. In most cases, high-skilled workers do the welding along the drawing for the marks and welding bead becomes the marks. But the inaccuracies due to human errors and high labor cost increase the needs for automating the work process of the draft marks. In the preceding work, an indoor robot was developed for automatic marking system on flat surfaces and the work proved that the robot welding was more effective and accurate than manual welding. However, many parts of the hull structure constructed at the outdoor are cowed shapes, which is beyond the capability of the robot developed for the indoor works on the flat surface. The marking on the curved steel surface requiring the 25m elevations is one of the main challenges to the conventional robots. In the present paper, the robot capable of climbing vertical curved steel surfaces and performing the welding at the marked position by effectively solving the problems mentioned earlier is presented.

  • PDF

Differential CORDIC-based High-speed Phase Calculator for 3D Depth Image Extraction from TOF Sensor (TOF 센서용 3차원 깊이 영상 추출을 위한 차동 CORDIC 기반 고속 위상 연산기)

  • Koo, Jung-Youn;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.643-650
    • /
    • 2014
  • A hardware implementation of phase calculator for extracting 3D depth image from TOF(Time-Of-Flight) sensor is described. The designed phase calculator adopts redundant binary number systems and a pipelined architecture to improve throughput and speed. It performs arctangent operation using vectoring mode of DCORDIC(Differential COordinate Rotation DIgital Computer) algorithm. Fixed-point MATLAB simulations are carried out to determine the optimal bit-widths and number of iteration. The phase calculator has ben verified by FPGA-in-the-loop verification using MATLAB/Simulink. A test chip has been fabricated using a TSMC $0.18-{\mu}m$ CMOS process, and test results show that the chip functions correctly. It has 82,000 gates and the estimated throughput is 400 MS/s at 400Mhz@1.8V.