Recently, the popularity of the recommendation system and the evaluation of the performance of the algorithm of the recommendation system have become important. In this study, we used modeling and RMSE to verify the effectiveness of various algorithms in movie data. The data of this study is based on user-based collaborative filtering using Pearson correlation coefficient, item-based collaborative filtering using cosine correlation coefficient, and item-based collaborative filtering model using singular value decomposition. As a result of evaluating the scores with three recommendation models, we found that item-based collaborative filtering accuracy is much higher than user-based collaborative filtering, and it is found that matrix recommendation is better when using matrix decomposition.
Proceedings of the Korea Association of Information Systems Conference
/
한국정보시스템학회 2005년도 춘계학술대회 발표 논문집
/
pp.393-408
/
2005
인터넷의 성장은 고객에게 많은 혜택을 주었지만, 방대한 양의 정보는 오히려 장시간의 상품 탐색과 제품 선택을 어렵게 만들었다. 이에 따라, 정보의 양을 줄여 줄 수 있는 서비스를 고객들은 요구를 하기 시작하였고, 이에 따라 다양한 방법들이 고객에게 제시 되어졌다. 제시되어진 방법 중의 하나가 개인화 추천 시스템이다. 추천 시스템은 고객의 취향과 관심에 적합한 상품을 추천 해 주는 서비스로서 상품 검색 노력을 줄여 주고, 고객의 취향에 적합한 제품을 제시 해 줌으로써 고객충성도 제고에도 많은 도움을 주고 있다. 이러한 추천 시스템에서 가장 많이 사용되어지고 있는 기법은 협업 필터링이다. 협업 필터링은 협업에서도유용한 기법으로 인정을 받았다. 하지만 희박성과 확장성이라는 문제점으로 인해 추천의 정확도가 다소 떨어진다는 것이 단점이다. 본 연구에서는 이러한 단점을 극복할 수 있는 방법으로써 Hybrid 협업 필터링 기법을제시하고, 이를 토대로 추천 기법이 혼합되어진 Hybrid 추천 시스템에 대한 개념을 제시하고자 한다.
Recently, many researches on recommendation systems and collaborative filtering have been proceeding in both research and practice. However, although product items may have multi-valued attributes, previous studies did not reflect the multi-valued attributes. To overcome this limitation, this paper proposes new methodology for recommendation system. The proposed methodology uses multi-valued attributes based on clustering technique for items and applies the collaborative filtering to provide accurate recommendations. In the proposed methodology, both user clustering-based CBR and item attribute clustering-based CBR technique have been applied to the collaborative filtering to consider correlation of item to item as well as correlation of user to user. By using multi-valued attribute-based clustering technique for items, characteristics of items are identified clearly. Extensive experiments have been performed with MovieLens data to validate the proposed methodology. The results of the experiment show that the proposed methodology outperforms the benchmarked methodologies: Case Based Reasoning Collaborative Filtering (CBR_CF) and User Clustering Case Based Reasoning Collaborative Filtering (UC_CBR_CF).
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2012년도 추계학술발표대회
/
pp.1371-1372
/
2012
협업 필터링은 유사한 사용자를 선별하여 아이템을 추천하는 대표적인 추천 방법이다. 협업 필터링을 이용한 추천에서 추천 품질은 유사 사용자를 선별하는 기법에 따라 크게 달라질 수 있다. 본 논문에서는 협업 필터링 추천의 품질을 크게 개선 시킬 수 있는 새로운 유사 사용자 선별 기법을 제안한다. 제안하는 기법에서는 Earth Mover's Distance (EMD)를 이용하여 사용자간의 유사도를 정의한다. EMD를 적용하기 위해서 각 사용자를 히스토그램으로 표현하며, 히스토그램 빈(bin)간의 거리를 정의한다. 이렇게 정의된 유사도를 이용하여 타깃 사용자와 유사한 사용자들을 선별하며, 이를 기반으로 타깃 사용자가 부여한 타깃 아이템에 대한 점수를 예측한다. 다양한 실험을 통하여, 제안된 기법이 기존 기법들과 비교하여 추천의 정확도를 최대 30%까지 향상시키는 것으로 나타났다.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2023년도 추계학술발표대회
/
pp.306-307
/
2023
본 연구는 협업 기반 필터링을 이용하여 반려동물 동반 가능 장소를 추천해주는 시스템을 제안한다. 반려동물 양육 인구가 늘고 있는 현재에 반해 반려동물을 대상으로 하는 추천 시스템은 발전이 더딘 상황이다. 반려동물은 다양한 크기와 종류를 갖고 있기 때문에 기존의 인간 기준의 추천 시스템과는 다르게 접근해야 할 필요성이 있다. 본 연구에서는 반려동물의 다양한 특성을 고려한 장소를 추천해주기 위해 협업 기반 필터링을 활용하였다. 사용자 데이터의 수가 늘어나면 결과의 정확도를 높여주지만, 사용자 간의 유사도를 구하는 비용이 증가한다. 이러한 장단점을 고려하여 '아이템 기반 협업 필터링' 과 '사용자 기반 협업 필터링' 방법을 적절히 사용하는 방향을 제안한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국정보통신학회 2017년도 추계학술대회
/
pp.151-153
/
2017
In recommendation system, collaborative filtering is the most important algorithm. Collaborative filtering is a method of making automatic predictions about the interests of a user by collecting preferences or taste information from many users. In this paper five algorithms were used. Metrics such as Recall-Precision, FPR-TPR,RMSE, MSE, MAE were calculated. From the result of the experiment, the user-based collaborative filtering was the best approach to recommend movies to users.
Proceedings of the Korea Information Processing Society Conference
/
한국정보처리학회 2015년도 추계학술발표대회
/
pp.1144-1145
/
2015
협업 필터링 기반 추천 시스템에서는 이웃 사용자를 정확하게 찾는 것이 추천 정확도에 핵심적인 영향을 미친다. 그러나 기존의 유사도 척도는 사용자가 공통으로 평가한 아이템만을 고려하여 유사도를 계산하기 때문에 이러한 아이템이 적은 사용자 간의 유사도가 부정확하게 계산되는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 공통으로 평가하지 않은 아이템을 함께 고려하여 유사도를 계산하는 방안을 제안한다. 또한, 실험을 통해 제안하는 방안이 협업 필터링 기반 추천 시스템의 정확도 향상에 기여함을 보인다.
The Journal of Korean Institute of Information Technology
/
제16권12호
/
pp.109-114
/
2018
Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국정보통신학회 2022년도 춘계학술대회
/
pp.655-656
/
2022
Among the analysis methods for a recommendation system, collaborative filtering is a major representative method in a recommendation system based on data analysis. A general usage method is a technique of finding a common pattern by using evaluation data of users for various items, and recommending a preferred item for a specific user. Therefore, in this paper, various algorithms were used to measure the index, and an algorithm suitable for prediction of user preference was found and presented.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국정보통신학회 2021년도 추계학술대회
/
pp.563-564
/
2021
협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.