• 제목/요약/키워드: 아이템기반협업필터링

검색결과 50건 처리시간 0.03초

An Empirical Study on Hybrid Recommendation System Using Movie Lens Data (무비렌즈 데이터를 이용한 하이브리드 추천 시스템에 대한 실증 연구)

  • Kim, Dong-Wook;Kim, Sung-Geun;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • 제2권1호
    • /
    • pp.41-48
    • /
    • 2017
  • Recently, the popularity of the recommendation system and the evaluation of the performance of the algorithm of the recommendation system have become important. In this study, we used modeling and RMSE to verify the effectiveness of various algorithms in movie data. The data of this study is based on user-based collaborative filtering using Pearson correlation coefficient, item-based collaborative filtering using cosine correlation coefficient, and item-based collaborative filtering model using singular value decomposition. As a result of evaluating the scores with three recommendation models, we found that item-based collaborative filtering accuracy is much higher than user-based collaborative filtering, and it is found that matrix recommendation is better when using matrix decomposition.

  • PDF

Web 상에서 개인화된 상품 추천을 위한 Hybrid 추천 시스템에 관한 연구

  • Son, Chang-Hwan;Kim, Gi-Su
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 한국정보시스템학회 2005년도 춘계학술대회 발표 논문집
    • /
    • pp.393-408
    • /
    • 2005
  • 인터넷의 성장은 고객에게 많은 혜택을 주었지만, 방대한 양의 정보는 오히려 장시간의 상품 탐색과 제품 선택을 어렵게 만들었다. 이에 따라, 정보의 양을 줄여 줄 수 있는 서비스를 고객들은 요구를 하기 시작하였고, 이에 따라 다양한 방법들이 고객에게 제시 되어졌다. 제시되어진 방법 중의 하나가 개인화 추천 시스템이다. 추천 시스템은 고객의 취향과 관심에 적합한 상품을 추천 해 주는 서비스로서 상품 검색 노력을 줄여 주고, 고객의 취향에 적합한 제품을 제시 해 줌으로써 고객충성도 제고에도 많은 도움을 주고 있다. 이러한 추천 시스템에서 가장 많이 사용되어지고 있는 기법은 협업 필터링이다. 협업 필터링은 협업에서도유용한 기법으로 인정을 받았다. 하지만 희박성과 확장성이라는 문제점으로 인해 추천의 정확도가 다소 떨어진다는 것이 단점이다. 본 연구에서는 이러한 단점을 극복할 수 있는 방법으로써 Hybrid 협업 필터링 기법을제시하고, 이를 토대로 추천 기법이 혼합되어진 Hybrid 추천 시스템에 대한 개념을 제시하고자 한다.

  • PDF

A Web Personalized Recommender System Using Clustering-based CBR (클러스터링 기반 사례기반추론을 이용한 웹 개인화 추천시스템)

  • Hong, Tae-Ho;Lee, Hee-Jung;Suh, Bo-Mil
    • Journal of Intelligence and Information Systems
    • /
    • 제11권1호
    • /
    • pp.107-121
    • /
    • 2005
  • Recently, many researches on recommendation systems and collaborative filtering have been proceeding in both research and practice. However, although product items may have multi-valued attributes, previous studies did not reflect the multi-valued attributes. To overcome this limitation, this paper proposes new methodology for recommendation system. The proposed methodology uses multi-valued attributes based on clustering technique for items and applies the collaborative filtering to provide accurate recommendations. In the proposed methodology, both user clustering-based CBR and item attribute clustering-based CBR technique have been applied to the collaborative filtering to consider correlation of item to item as well as correlation of user to user. By using multi-valued attribute-based clustering technique for items, characteristics of items are identified clearly. Extensive experiments have been performed with MovieLens data to validate the proposed methodology. The results of the experiment show that the proposed methodology outperforms the benchmarked methodologies: Case Based Reasoning Collaborative Filtering (CBR_CF) and User Clustering Case Based Reasoning Collaborative Filtering (UC_CBR_CF).

  • PDF

A Method for Selecting Similar Users for Collaborative Filtering (협업 필터링을 위한 EMD 기반 유사 사용자 선별 기법)

  • Kang, Yoon-Suk;Jeong, Seihyun;Lee, Sang-Chul;Jang, Min-Hee;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1371-1372
    • /
    • 2012
  • 협업 필터링은 유사한 사용자를 선별하여 아이템을 추천하는 대표적인 추천 방법이다. 협업 필터링을 이용한 추천에서 추천 품질은 유사 사용자를 선별하는 기법에 따라 크게 달라질 수 있다. 본 논문에서는 협업 필터링 추천의 품질을 크게 개선 시킬 수 있는 새로운 유사 사용자 선별 기법을 제안한다. 제안하는 기법에서는 Earth Mover's Distance (EMD)를 이용하여 사용자간의 유사도를 정의한다. EMD를 적용하기 위해서 각 사용자를 히스토그램으로 표현하며, 히스토그램 빈(bin)간의 거리를 정의한다. 이렇게 정의된 유사도를 이용하여 타깃 사용자와 유사한 사용자들을 선별하며, 이를 기반으로 타깃 사용자가 부여한 타깃 아이템에 대한 점수를 예측한다. 다양한 실험을 통하여, 제안된 기법이 기존 기법들과 비교하여 추천의 정확도를 최대 30%까지 향상시키는 것으로 나타났다.

Pet-friendly place recommendation system using collaborative filtering (협업 기반 필터링을 이용한 반려동물 동반 장소 추천 시스템)

  • Yun-Jeong Hwang;Su-Hyeon Jang;Min Gyo Chung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.306-307
    • /
    • 2023
  • 본 연구는 협업 기반 필터링을 이용하여 반려동물 동반 가능 장소를 추천해주는 시스템을 제안한다. 반려동물 양육 인구가 늘고 있는 현재에 반해 반려동물을 대상으로 하는 추천 시스템은 발전이 더딘 상황이다. 반려동물은 다양한 크기와 종류를 갖고 있기 때문에 기존의 인간 기준의 추천 시스템과는 다르게 접근해야 할 필요성이 있다. 본 연구에서는 반려동물의 다양한 특성을 고려한 장소를 추천해주기 위해 협업 기반 필터링을 활용하였다. 사용자 데이터의 수가 늘어나면 결과의 정확도를 높여주지만, 사용자 간의 유사도를 구하는 비용이 증가한다. 이러한 장단점을 고려하여 '아이템 기반 협업 필터링' 과 '사용자 기반 협업 필터링' 방법을 적절히 사용하는 방향을 제안한다.

A Comparative Study on Collaborative Filtering Algorithm (협업 필터링 알고리즘에 관한 비교연구)

  • Li, Jiapei;Li, Xiaomeng;Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.151-153
    • /
    • 2017
  • In recommendation system, collaborative filtering is the most important algorithm. Collaborative filtering is a method of making automatic predictions about the interests of a user by collecting preferences or taste information from many users. In this paper five algorithms were used. Metrics such as Recall-Precision, FPR-TPR,RMSE, MSE, MAE were calculated. From the result of the experiment, the user-based collaborative filtering was the best approach to recommend movies to users.

  • PDF

An Approach to Improve the Credibility of Similarity Calculation in CF-based Recommender Systems (협업필터링 기반 추천시스템에서 유사도 계산의 신뢰성 향상 방안)

  • Lee, Gun Woo;Jeon, Dong Yeoup;Ha, Jiwoon;Kim, Hyung-ook;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1144-1145
    • /
    • 2015
  • 협업 필터링 기반 추천 시스템에서는 이웃 사용자를 정확하게 찾는 것이 추천 정확도에 핵심적인 영향을 미친다. 그러나 기존의 유사도 척도는 사용자가 공통으로 평가한 아이템만을 고려하여 유사도를 계산하기 때문에 이러한 아이템이 적은 사용자 간의 유사도가 부정확하게 계산되는 문제가 있다. 본 논문에서는 이러한 문제를 극복하기 위해 공통으로 평가하지 않은 아이템을 함께 고려하여 유사도를 계산하는 방안을 제안한다. 또한, 실험을 통해 제안하는 방안이 협업 필터링 기반 추천 시스템의 정확도 향상에 기여함을 보인다.

Transitive Similarity Evaluation Model for Improving Sparsity in Collaborative Filtering (협업필터링의 희박 행렬 문제를 위한 이행적 유사도 평가 모델)

  • Bae, Eun-Young;Yu, Seok-Jong
    • The Journal of Korean Institute of Information Technology
    • /
    • 제16권12호
    • /
    • pp.109-114
    • /
    • 2018
  • Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.

Collaborative filtering-based recommendation algorithm research (협업 필터링 기반 추천 알고리즘 연구)

  • Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.655-656
    • /
    • 2022
  • Among the analysis methods for a recommendation system, collaborative filtering is a major representative method in a recommendation system based on data analysis. A general usage method is a technique of finding a common pattern by using evaluation data of users for various items, and recommending a preferred item for a specific user. Therefore, in this paper, various algorithms were used to measure the index, and an algorithm suitable for prediction of user preference was found and presented.

  • PDF

Comparison of Recommendation Algorithms for Specific Domains (도메인 기반 추천 알고리즘 비교 연구)

  • Lee, HyunChang;Shin, SeongYoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.563-564
    • /
    • 2021
  • 협업 필터링은 데이터 분석을 통한 추천 시스템에서 대표적인 방법이다. 사용 방법은 다양한 아이템에 대해서 사용자들의 평가 데이터를 활용하여 공통적인 패턴을 찾아서 특정 사용자에 대한 선호 아이템을 추천하는 기법이다. 이에 본 논문에서는 여러 가지 알고리즘을 사용하여 지표 측정에 활용하였으며, 사용자 선호에 대한 예측에 적합한 알고리즘을 찾아서 제시하였다.

  • PDF