Matrix factorization은 사용자의 아이템 선호도를 통해 아이템을 추천해주는 성공적인 기술 중 하나이다. 이 기법은 사용자-아이템의 선호도 행렬을 채우는 것을 목표로 한다. 이 목표를 달성하기 위해 사용자-아이템의 선호도 행렬을 사용자 행렬(user latent factor)와 아이템 행렬(item latent factor)로 분해하고, 각 행렬에 대해 추론하여 완성된 사용자-아이템의 선호도 행렬을 추론한다. 하지만 Matrix factorization은 아이템의 수가 많고, 아이템에 대한 사용자들의 선호도 데이터가 적을 때 성능이 제한된다. 또한 새로운 아이템이 추가되었을 때, 새로운 아이템에 대한 사용자들의 선호도 정보가 없기 때문에 새로운 아이템이 추천되지 않는다는 문제를 가진다. 이를 해결하기 위해 본 논문에서는 아이템에 대한 부가적인 정보인 아이템 간의 유사도 정보와 아이템의 시나리오 정보의 유사도를 모델링하여 기존의 전통적인 Matrix factorization에 추가하는 아이템 정보 기반 추천 시스템을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.211-213
/
2003
본 논문에서는 MPEG-21 통합 멀티미디어 프레임워크에서 이용되는 기본 단위인 디지털 아이템(Digital Item)의 처리 방안에 대해 설명하고, 디지털 아이템 소비 시스템에 대해 논하였다. 현재 MPEG을 중심으로 표준화중인 디지털 아이템 프로세싱(Digital Item Processing; DIP)을 이용한 디지털 아이템 처리는 디지털 아이템에 소비 및 이용에 대한 기능을 부여한다. DUP 에 기반을 둔 디지털 아이템 처리 및 소비 구조의 적용을 위해 교육용 멀티미디어 컨텐츠를 표현하는 디지털 아이템을 구조화하고 디지털 아이템 소비기를 구현하여 구조화된 디지털 아이템 처리 및 소비 시스템의 유효성을 입증하였다.
본 논문에서는 MPEG-21 프레임워크에서 이용되는 기본 단위인 디지털 아이템(Digital Item)의 처리에 관한 과정을 설명하고, 처리과정에 적용 가능한 디지털 아이템의 모델링에 대하여 논하였다 MPEG-21 에서 정의된 디지털 아이템 선언(Digital Item Declaration;DID)은 디지털 아이템의 정적인 선언에 그치는 반면, 디지털 아이템 프로세싱(Digital Item Processing;DIP)을 기반으로 한 디지털 아이템에는 처리 및 이용에 관한 기능이 부여된다. 모델링된 디지털 아이템의 처리를 위한 구조를 정의하고, DIP 구조와 디지털 아이템의 유효성을 입증하기 위해 교육용 멀티미디어 컨텐츠를 담고 있는 디지털아이템을 생성하였다. 또한 DIP 기반에서 모델링된 디지털 아이템을 소비할 수 있는 디지털 아이템 플레이어의 구현과 테스트 결과에 대해서도 설명하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2002.11a
/
pp.133-137
/
2002
네트워크상에서 멀티미디어 컨텐츠(디지털 아이템)를 다양한 전송 매체(인터넷, 방송 무선전화 등)를 통해 전달하고, 서로 다른 기능의 단말기(PDA, PC, TV, Phone 등)를 통해 디지털 아이템을 소비하는데 있어 상호호환성(Interoperability)을 제공하기 위해 디지털 아이템의 생성, 전달, 소비 단계에 이르기까지 디지털 아이템의 규격을 제정하고자 MPEG-21(멀티미디어 프레임워크)이라는 이름의 국제 표준화 작업이 진행 중이다[1]. 본 논문에서는 MPEG-21의 디지털 아이템 선언 언어인 DIDL(Digital Item Declaration Language)을 이용하여 컨텍스트 디지털 아이템(XDI: conteXt Digital Item)을 XML 문서형태로 생성하고, 이를 컨텐츠 디지털 아이템(CDI: Content Digital Item)의 종류(영화, 음악, 도서, 게임 등)에 구애받지 않고 웹 브라우저를 통해 소비할 수 있는 디지털 아이템 브라우저를 구현하였다. 디지털 아이템의 다양한 형태에 적절히 대응하기 위해 XSLT(XML Stylesheet Language Transform)를 이용하여 디지털 아이템 정보를 표현하고 웹 브라우저를 통해 소비자의 환경에 적합한 디지털 아이템을 소비 및 이용할 수 있는 어플리케이션을 제공하는 환경에 대한 연구 결과를 제시한다.
'뚜렷한 사업 아이템이 없다.' '아이템이 고갈된 것은 아닌가?' 최근 자판기 산업의 부진을 바라보는 시각에 있어 사업아이템 부재에 대한 우려의 목소리가 커지고 있다. 과거보다 새로운 아이템의 발굴과 상품화에 대한 업체들의 의지가 크게 꺽여, 시장 활성화를 주도할만한 뚜렷한 신제품이 많이 보이지 않는 상황에 있다. 침체에 빠진 산업에 활력을 부여하기 위해서는 새로운 아이템에 대한 투자가 활발히 진행되어야 하는 게 가장 시급한 과제이다. 큰 변화 없이 기존 제품 위주로 자판기 산업의 무한한 가능성을 묶고 있을 시점이 결코 아니다. 금호 기획특집에서는 자판기 산업의 아이템 다변화 동향이 부진한 이유를 규명해보고, 신시장 활성화를 주도할 만한 아이템 개발의 묘책은 과연 어디에 있는 지를 살펴봤다.
전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.
In contrast to content_based filtering systems, collaborative filtering systems not only don't contain information of items, they can not recommend items when users don't provide the information of their interests. In this paper, we propose the recommender agent using association item tree to solve the shortcomings of collaborative filtering systems. Firstly, the proposed method clusters users into groups using vector space model and K-means algorithm and selects group typical rating values. Secondly, the degree of associations between items is extracted from computing mutual information between items and an associative item tree is generated by group. Finally, the method recommends items to an active user by using a group typical rating value and an association item tree. The recommender agent recommends items by combining user information with item information. In addition, it can accurately recommend items to an active user, whose information is insufficient at first rate, by using an association item tree based on mutual information for the similarity between items. The proposed method is compared with previous methods on the data set of MovieLens recommender system.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.05a
/
pp.321-328
/
2007
데이터마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 제안되어 왔다. 본 논문에서는 정점으로 아이템을 표현하고, 간선으로 두 아이템집합을 표현하는 빈발 패턴 네트워크(FPN)이라 불리는 새 자료 구조를 제안한다. 빈발 패턴 네트워크에서 아이템 사이의 연관 관계를 발견하기 위해 이 구조를 어떻게 효율적으로 사용 하느냐에 초점을 두고 있다. 구조의 효율적인 사용을 위하여 한 아이템이 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 네트워크의 정점을 클러스터링하는 방법을 사용한다. 실험은 신뢰도, 상관관계 그리고 간선 가중치 유사도를 이용하여 네트워크에서 아이템 클러스터링의 정확도를 보여준다. 본 논문의 실험 결과를 통해 신뢰도 유사도가 네트워크의 정점을 클러스터링할 때 클러스터의 정확성에 가장 많은 영향을 미친다는 것을 알 수 있었다.
Collecting statistics from client requests, the broadcast server partitions data items into hot and cold-item sets with the optimal cut-off point. Hot items are broadcast periodically with periods based on their access probabilities. In a time slot with no hot items scheduled, the server broadcasts a proper cold item considering the waiting time and the number of outstanding requests. We analyze the optimal the cut-off point by calculating average response time as a function of the cut-off point. Simulation results show that our proposed algorithm outperforms existing methods in various circumstances.
There are many methods to buy and sell online items. But A lot of people use item trade sites when they want to sell or buy their items. This article analyzes the price structure of item trade, and finds why gamers use item trade sites in spite of the brokerage. We analyze the difference of item prices between in the market of item trade sites and in the market of other trade methods. And we find that the prices of item trade sites is higher than those of other markets. Buyers pay about 6% higher prices to seller. The higher prices are for the safe trading what item trade sites supply. And sellers take about 0.7% higher prices than in other markets. There is a sufficient motive when gamers use item trade sites in spite of their high prices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.