Journal of the Korea Society of Computer and Information
/
v.19
no.2
/
pp.57-65
/
2014
The role of sound in producing 3D animation clip is one of the important factor to maximize the immersive effects of the scene. Especially interaction between video and sound makes the scene expressions more apparent, which is diversely applied in video production. One of these interaction techniques, the out-focussing technique is frequently used in both real video and 3D animation field. But in 3D animation, out-focussing is not easily implemented as in music videos or explosion scenes in real video shots. This paper analyzes the sound data to synchronize the depth of field with it. The novel out-focussing technique is proposed, where the object's field of depth is controlled by beat rhythm in the sound data.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.257-260
/
2021
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.429-432
/
2020
본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 합성곱 신경망을 통해 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 합성곱 신경망 네트워크에 학습하기 위한 데이터를 구축하며, 이렇게 얻어진 데이터를 이용하여 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용하며, 네트워크 학습 단계에서 수렴률을 높이기 위해 스무딩을 과정을 한번 더 적용한 결과를 사용한다. 본 논문에서 제안하는 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 빠른 시간 내에 찾아내며, 제안하는 방법은 DoF영역을 사용자의 ROI(Region of interest)로 활용하여 NPR렌더링, 객체 검출 등 다양한 곳에 활용이 가능하다.
Proceedings of the Korean Society of Computer Information Conference
/
2021.01a
/
pp.253-256
/
2021
본 논문에서는 합성곱 신경망을 통해 학습된 DoF(피사계 심도, Depth of field) 네트워크 아키텍처를 이용하여 객체 인식, 시점 추적, 문자 인식, 비사실적 렌더링 등 다양한 애플리케이션에 적용할 수 있는 사후 필터링 기법에 대해 살펴본다. 일반적으로 영상은 포커싱과 아웃포커싱에 의해 사용자의 관심표현이 결정되며, 이를 이용하여 영상 내 중요도를 판단한다. 영상 내에는 수많은 콘텐츠들이 혼재되어 있기 때문에 사용자가 집중적으로 보고 있는 콘텐츠를 찾아내기 어렵다. 본 논문에서는 사용자가 흥미롭고 집중적으로 보고 있는 영역을 DoF 네트워크로 학습시키고, 이를 통해 이전 기법으로는 표현할 수 없었던 DoF 기반 객체 인식, 시점 추적, 문자 인식, 비사실적 렌더링을 효율적으로 표현해낸다.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.442-444
/
2011
본 논문에서는 접사에서의 주요 객체 검출과 검출된 주요객체의 가장 최적화된 구도를 사용자에게 안내하는 방법을 제안한다. 대부분의 접사는 주요객체에 초점을 맞추고 배경이 되는 영역은 아웃 포커싱 기법을 사용하여 촬영한다는 점에서 착안하여 주요 객체를 검출하고 검출된 주요객체와 사진 구도의 3등분할점과 구도점의 상관관계에 대하여 계산하여 최적의 구도라고 판단되는 화면으로 사용자를 유도한다. 제안하는 방법으로의 실험했을 때 좋은 결과를 얻는 것을 확인할 수 있었다.
Journal of the Korea Society of Computer and Information
/
v.26
no.3
/
pp.51-57
/
2021
In this paper, we propose a method to find the DoF(Depth of field) that is blurred in an image by focusing and out-focusing the camera through a efficient convolutional neural network. Our approach uses the RGB channel-based cross-correlation filter to efficiently classify the DoF region from the image and build data for learning in the convolutional neural network. A data pair of the training data is established between the image and the DoF weighted map. Data used for learning uses DoF weight maps extracted by cross-correlation filters, and uses the result of applying the smoothing process to increase the convergence rate in the network learning stage. The DoF weighted image obtained as the test result stably finds the DoF region in the input image. As a result, the proposed method can be used in various places such as NPR(Non-photorealistic rendering) rendering and object detection by using the DoF area as the user's ROI(Region of interest).
In this paper, we propose a new method for toon shading using 3D texture which renders 3d objects in a cartoon style. The conventional toon shading using 1D texture displays shading tone by computing the relative position and orientation between a light vector and surface normal. The 1D texture alone has limits to express the various tone change according to any viewing condition. Therefore Barla et. al. replaces a 1D texture with a 2D texture whose the second dimension corresponds to the view-dependent effects such as level-of-abstraction, depthof-field. The proposed scheme extends 2D texture to 3D texture by adding one dimension with the geometric information of 3D objects such as curvature, saliency, and coordinates. This approach supports two kinds of extensions for cartoon style diversification. First, we support "shape exaggeration effect" to emphasize silhouette or highlight according to the geometric information of 3D objects. Second, we further incorporate "cartoon specific effect", which is examples of screen tone and out focusing frequently appeared in cartoons. We demonstrate the effectiveness of our approach through examples that include a number of 3d objects rendered in various cartoon style.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.183-184
/
2023
스토리를 제대로 전달하려는 관점에서 제작자는 관객들이 무엇을 보게 할 것인가에 대한 고민이 필요하다. 즉, 관객의 시선을 시종일관 끌고 다녀야 한다. 그러한 관점과 더불어 관객이 일상에서 익숙한 공간감을 스크린 내에서도 확보해 줄 필요가 있다. 그러기 위해서는 영상의 깊이를 충분히 고려해야 하는데 이는 관객의 시선을 유도하는 반면에 현실 공간감을 확보하는 것이다. 스크린 내의 물체들을 자연 그대로의 원근감을 갖도록 촬영 환경을 구성하는 것도 필요하지만 스토리를 전개하는 피사체를 배경과 분리시킴으로써 자연스럽게 초점과 영점을 맞출 수 있도록 장면을 구현하는 것이다. 이를 위해서 제작(production) 단계에서는 촬영기법으로, 후반작업(post-production) 단계에서는 아웃 포커싱 등의 효과를 적용하는 방법 등이 고려될 수 있다. 본 논문에서는 영상의 깊이를 확보해야만 하는 이유와 이의 방법 등을 고찰해 본다.
The depth of field is the range that the objects inside of this range treated to be focused. Objects that are placed out of this range are out of focus and become blurred. In computer graphics, generating depth of field effects gives a great reality to rendered images. The previous researches on the depth of field in computer graphics can be divided into two major categories. One of them is the distributed ray tracing that samples the lens area against each pixel. It is possible to obtain precise results without noise if enough number of samples are taken. However, to make a good result, a great number of samples are needed, resulting in an enormous timing requirement. The other approach is the method that approximates depth of field effect by post-processing an image and its depth values computed using a pin-hole camera. Though the second technique is not that physically correct like distributed ray tracing, many approaches which using this idea have been introduced because it is much faster than the first approach. But the post-processing have some limitations because of the lack of ray information. In this paper, we first present an improvement technique that corrects the previous post-processing methods and then propose another one that accelerates the distributed ray tracing by using a radiance caching method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.