• Title/Summary/Keyword: 아미노산 대사산물

Search Result 42, Processing Time 0.026 seconds

Chlorsulfuron-induced Phytotoxicity in Canola(Brassica napus L.) Seedlings (캐놀라 식물체내에서 클로르설푸론의 약해 유발 요인)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung;Vanden Born, William H.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.199-206
    • /
    • 1997
  • Chlorsulfuron, an acetolactate-synthase-inhibiting sulfonylurea herbicide, induces many metabolic and physiological changes in susceptible plants. The objective of this study was to determine to what extent chlorsulfuton-induced phytotoxicity was due to a shortage of final products(the branched-chain amino acids valine, leucine, and isoleucine) or to an accumulation of a toxic metabolite(2-ketobutyrate), or both, in a susceptible species. Chlorsulfuron-treated canola seedlings showed growth inhibition and injury symptoms that included chlorosis, downward leaf rolling, and accumulation of anthocyanins. Supplementation with valine, leucine, and isoleucine prevented the chlorsulfuron-induced growth inhibition and injury symptoms only partially, suggesting that factor(s) other than a shortage of the branched-chain amino acids also are involved in the phytotoxicity. Canola seedlings treated with 2-ketobutyrate showed reduced growth, but they showed different changes in metabolites than seedlings treated with chlorsulfuron. The results suggest that 2-ketobutyrate is not involved in chlorsulfuron-induced phytotoxicity. We conclude that chlorsulfuron-induced phytotoxicity is due at least in part to a shortage of branched-chain amino acids.

  • PDF

Nutritional and Bioactive Compounds of Yellow Cherry Tomato (황색 방울토마토의 영양성분 및 생리활성 물질분석)

  • Choi, Suk-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.2
    • /
    • pp.451-461
    • /
    • 2020
  • This study was carried out to investigate the value of yellow cherry tomato as a food material. Contents of nutritional and bioactive compound were determined from yellow cherry tomato. 17 of amino acids occurred. L-Glutamic acid (45.15%), L-glutamine (22%) and L-aspartic acid (11%) were the main amino acids. 8 of essential amino acids were found except tryptophan. γ-aminobutyric acid (GABA) was found in high contentration (258.58 mg/100g). Contents of Lycopene and β-carotene were 2.18 mg/100 g and 9.90 mg/100 g, respectively. Yellow cherry tomato contained naringenin chalcone, quercetin-3-rutinoside(rutin), 5-caffeoylquinic acid, 3-caffeoylquinic acid, and quercetin-3-apiosylrutinoside that have various bioactivities. These results revealed that yellow cherry tomato would be very useful and valuable food material.

Enhancement of Anaerobic Degradation by Organic Stimulants Addition (반응촉진 유기물 첨가에 의한 혐기성 분해율의 향상에 관한 연구)

  • 손부순;허준무;배형석;서성철;박종안
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.32-43
    • /
    • 1998
  • 혐기성대상과정중 메탄생성균(methanogenic bacteria)에 의한 메탄생성시 주요 기질인 아세트산 (acetic acid)을 분해할 경우에 여러 가지 복합기질 중 아미노산 첨가에 의한 분해속도증가에 미치는 영향과 투입한 아미노산이 미생물에 의하여 생체량으로 합성되는 정도를 고찰하였다. 실험결과 메탄생성균은 glycine, serine, threonine, aspartic acid, trytophan 등의 혐기성미생물의 생체량합성에 필요한 물질을 투입할 경우에 아세트산의 분해속도가 증가하였으며, 여러 가지 아미노산을 혼합하여 주입한 결과 분해속도가 17% 향상되었다. 한편, 메탄생성균의 lysing에 의하여 생성된 유기물은 메탄이나 이산화탄소의 최종산물로 전환되기보다는 새로운 메탄생성균의 생체량을 형성하는데 직접 이용되었으며, 아세트산의 분해속도를 52% 증가시켰다. 단순기질(sole substrate)과 복합기질(complex substrate)의 분해는 미생물의 생체량합성에 필요한 여러 가지 중간대사산물간의 상호자극효과에 의하여 복합기질이 용이한 것으로 나타났으며, 유입기질내 활성이 강한 슬러지의 농도는 혐기성처리에 매우 중요한 부분을 차지하였다.

  • PDF

Fortification of Amino Acids to Improve Hybridoma Cell Growth and Monoclonal Antibody Production in Perfusion Culture (Perfusion배양시 세포성장 및 항체생산 향상을 위한 아미노산의 보강)

  • 이수영;최병욱;오한규;윤정원;전복환;변태호;박송용
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.188-191
    • /
    • 1999
  • We have investigated the fortifying effect of amino acids on the cell growth and productivity during the perfusion culture of hybridoma vR8 cells in serum-free media. Through the quantitative analysis of amino acids and metabolites in perfusion culture, we found that many amino acids(glutamine, histidine, arginine, methionine, isoleucine, leucine, phenylalanine, tryptophane) were heavily consumed at cell density of $1.06{\times}10^7$cells/mL. Due to amino acid depletion, cells died suddenly. So we supplemented the media with those amino acids by 30-170%. As a result, were could increase maximum cell density by 270%, average specific productivity by 175%, and average volumetric productivity by 560% in this fortified media, GC-HY-S2.

  • PDF

Plasma Amino Acid and Urine Organic Acid in Diagnosis of MELAS (멜라스 증후군 진단에서의 혈장 아미노산과 소변 유기산 분석)

  • Ji-Hoon Na;Young-Mock Lee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.1
    • /
    • pp.17-24
    • /
    • 2023
  • Purpose: In the past, detection of metabolic abnormalities in plasma amino acid (PAA) and urine organic acid (UOA) has been widely used to diagnose clinical mitochondrial diseases, such as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS). In this study, the diagnostic values of PAA and UOA were reviewed, and their effectiveness in the diagnosis of MELAS was examined retrospectively. Methods: Blood and urine samples at the time of diagnosis were collected from all clinically diagnosed MELAS patients (n=31), and PAA and UOA tests were performed. All samples were collected in a fasting state to minimize artifacts in the results. The difference in the ratio of abnormal metabolites of PAA and UOA at initial diagnosis was statistically compared between the MELAS with genetic confirmation (n=19, m.3243A>G mutation) and MELAS without genetic confirmation (n=12) groups. The MELAS without genetic confirmation group was used as control. Results: Comparison of PAA and UOA between the two groups revealed that no abnormal metabolites showed characteristic differences between gene-confirmed MELAS patients with and those without genetic confirmation. Conclusions: Abnormal values of metabolites in PAA or UOA might be useful as a screening test but are not sufficient to diagnose MELAS patients.

  • PDF

Identification of Amino Acid Conjugates of Indole-3-acetic Acid in Etiolated Pea(Pisum sativum L.) Shoots (완두 유묘중 IAA-amino acid 복합체의 확인)

  • Park, Chang-Kyu;Park, Ro-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1985
  • To identify amino acid conjugates of indole-3-acetic acid(IAA) in plants, 23 amino acid conjugates of IAA were synthesized and characterized by UV and IR spectroscopies, and thinlayer and high performance liquid chromatographies. In etiolated pea(Pisum sativum L. var. Sparkle) shoots, aspartic and glutamic acid conjugates of IAA were tentatively identified as metabolites of endogenous IAA by thin-layer and high performance liquid chromatography, and by alkaline hydrolysis of the conjugates.

  • PDF

Studies on the Effect of Glyoxylate on the Biosynthesis of Prodigiosin in Serratia marcescens (Serratia marcescens에서 글리옥실산이 Prodigiosin 생합성에 미치는 연구)

  • 최병범;방선권
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.475-479
    • /
    • 1997
  • The effects of amino acids and metabolites in growth media on the biosynthesis of prodigiosin from Serratia marcescens ATCC 25419 were examined. The prodigiosin synthesis was decreased approximately by 50 to 80% by several amino acids and metabolites tested. The prodigiosin synthesis was increased approximately by 20 to 40% by a low concentration of glyoxylate(1 to 3mM) and outstandingly increased by 122% at 5mM concentration under anaerobic condition. However, the prodigiosin synthesis was decreased approximately by 50 to 90% at a high concentration(20 to 30mM) under anaerobic condition. The prodigiosin was not synthesized by pyruvate and $\alpha$-ketobutyrate under aerobic and anaerobic condition, with addition to glyoxylate under aerobic condition, among the range from 0.5 to 30mM, while the cell growth under anaerobic condition was decreased distinctly by a high concentration(20mM above) of glyoxylate. These data suggest that the growth and prodigiosin of S. marcescens is positively regulated by a low concentration of glyoxylate (1-5mM), but repressed by a high concentration of glyoxylate(20mM above) unlike pyruvate and $\alpha$-ketobutyrate.

  • PDF

Study on the Relationship between Skin Dryness and Amino Acids in Stratum Corneum (아미노산 동시분석을 통한 피부보습능과 각질 중 아미노산 함량과의 상관관계 연구)

  • Joo, Kyung-Mi;Han, Ji-Yeon;Son, Eui-Dong;Nam, Gae-Won;Jeong, Hye-Jin;Lim, Kyung-Min;Cho, Jun-Cheol
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.1
    • /
    • pp.75-82
    • /
    • 2012
  • Natural moisturizing factors (NMFs) are hydrophilic and water-soluble components in stratum corneum of the skin. NMFs absorb water from outer environment and enhance the water-holding capacity of stratum corneum and thereby, prevent the dryness and increase flexibility and plasticity of skin. NMFs are mainly composed of amino acids and their metabolites that are produced from the degradation of filaggrin. Here we established a simultaneous quantification method for 22 amino acids in tape-stripped stratum corneum samples using UPLC-PDA. With this method, we analyzed amino acid contents from tape-stripped stratum corneum samples of forearm and forehead regions from 15 healthy volunteers. Amino acid contents of inner (or upper) region were higher than outer (or lower) region of stratum corneum. Amino acid contents of stratum corneum of forearm were higher by 1.5 fold than forehead region. Of note, total amino acid contents were significantly and inversely correlated with trans-epidermal water loss (TEWL), an index for skin barrier function. Especially, Ser, Glu, Gly, Ala and Thr were determined to positively affect skin mositurizing activities. In conclusion, we could demonstrate that amino acid contents of stratum corneum are closely linked with skin barrier and moisturizing function, providing an important and fundamental methodology for the study of amino acids in skin physiology.

[ $^{14}CO_2$ ] Assimilation and Metabolism of $^{14}C-$Assimilates in Whole Plants of Spring Barley In Relation to Adult-Plant Resistance to Powdery Mildew (흰가루병에 대해 성체식물 저항성을 지닌 봄보리에서 $^{14}CO_2$ 동화와 $^{14}C-$동화산물의 대사)

  • Hwang Byung Kook;Ibenthal Wolf-Dieter;Heitefuss Rudolf
    • Korean Journal Plant Pathology
    • /
    • v.2 no.1
    • /
    • pp.22-30
    • /
    • 1986
  • The effect of powdery mildew infection on the $^{14}CO_2$ assimilation and metabolism of $^{14}C-$assimilates was studied with spring barley cultivars, susceptible Peruvian and adult-plant resistant Asse at the four-leaf stage. No consistent differences between Peruvian and Asse were revealed in $^{14}CO_2$ assimilation and metabolism of $^{14}C-$assimilates in healthy whole plants. In the two cultivars, $^{14}CO_2$ assimilation and translocation of assimilates decreased as the number of infected leaves increased. Despite the same infection intensity, $^{14}CO_2$ assimilation was less inhibited in Asse than Peruvian. Infection reduced the fixation of $^{14}CO_2$ in noninfected fourth leaves of Peruvian more severely than that of Asse. Infection of the lower 3 leaves also inhibited the incorporation of 14 C into carbohydrates such as fructose and glucose in noninfected fourth leaves and their translocation into leaf sheathes, the inhibitions being greater in Peruvian than Asse. In the infected third leaves, there was a reduction of 14 C-activity in carbohydrates, more $^{14}C-$labeled fructose and glucose being retained in Peruvian. The stimulation of $^{14}C-$organic acid synthesis in all plant organs was more pronounced in Peruvian than Asse. Powdery mildew markedly increased the incorporation of $^{14}C$ into amino acids in infected third and noninfected fourth leaves, but reduced their translocation to the leaf sheathes. A greater rise of $^{14}C-$ activity in some amino acids in the two leaves was found in Peruvian than Asse.

  • PDF

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.