• Title/Summary/Keyword: 아두파일럿

Search Result 3, Processing Time 0.018 seconds

Autonomous Path-Tracking Performance of an OmniX-Type Boat Based on Open-Source Ardupilot with RTK GPS (RTK GPS를 이용한 오픈소스 아두파일럿 기반 OmniX 보트의 자율주행 경로 추적성에 관한 연구)

  • An, Nam-Hyun;Gu, Bon-Kuk;Park, Hui-Seung;Jang, Ho-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.867-874
    • /
    • 2021
  • The IoT (Internet of Things) technology is rapidly becoming an important consideration in many engineering fields in the current 4th industrial era. In recent years, the concepts of digital shipbuilding and smart factories have been adopted as trends in shipyards. However, there is active interest in research on implementing autonomous driving in autonomous vehicles and airplanes, which is currently available in commercial form in a limited capacity. The present study is regarding the path-tracking performance of a boat to accomplish an autonomous driving mission using a flight controller (FC) and real-time kinematic (RTK) global positioning system (GPS) based on an open-source Ardupilot; an actual sea test is also performed using this system on a calm lake. The boat's mission is to evaluate the maneuverability of the self-driving process to a specific point and returning to the home position. For a given speed, the difference between the preset mission trajectory and actual operational trajectory was analyzed, and a series of studies were conducted on the applicability of the system to ships. In addition, the movements and maneuverability of the OmniX-type hull with four propellers were investigated, and the driving path-tracking performance was observed to increase by a maximum of 48%.

A Study on Automatic Operation Control of Autonomous Ships (자율운항선박의 운항 자동제어 기초 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2021
  • In the era of the 4th Industrial Revolution, the interest in autonomous ship technology is increasing as high-tech technologies are being increasingly utilized throughout the industry. Therefore, we conducted a basic study on autonomous ships. In particular, a passenger ship model was produced and an autonomous navigation system was established by applying the ardupilot used for drones. The possibility of automatic control of the autonomous ship operations was confirmed by executing various voyage plans using the built model ship. In the performance test for maintaining the course the model ship could not follow the designated course straight and sailed up to 5.4 m away from the course while navigating in a zigzag (S-shape); however, after the parameters were modified, the deviation distance was reduced to a maximum of 1.8 m. In the turning performance test, the maximum diameter of the turning sphere was found to be approximately 9.3 m, but no significant change could be confirmed even after the parameters were modified. However, the results of our tests on slowing down the ship before arriving at the WP confirmed that the diameter of the turning sphere was reduced to a maximum of approximately 3.2 m. In order to evaluate the stopping performance, the last scheduled stopping position of all experiments was compared with the actual stopping position of the model ship and it was confirmed that the model ship stopped at a point at least 0.4 m and a maximum of 6.2 m away from the stopping position. In the future, improvement of course stability, turning performance, and stopping performance is required through modification and supplementation of various parameters. Moreover, a study on automatic berthing of the model ship through automatic control is planned.

Facility Management Drone with Built-in Autopilot Function (오토파일럿이 가능한 시설물 관리 드론)

  • Park, Myeong-Chul;Kim, Jun-Young;Joen, Hwa-Yeol;Bae, Chang-Ho;Park, Sang-Mii;Han, Dong-Rok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.487-488
    • /
    • 2021
  • 시설물 점검은 사람이 직접 들어가거나 올라가 확인하는 방식이 일반적이다. 본 연구에서는 시설물 점검을 보다 안전하고 신속하게 하는 것을 전제로 하여 현재 상용화 되고 있는 드론과 아두이노를 이용한 센서를 적용하고자 한다. 본 논문은 기존의 어려운 조작의 드론에 건물 내부에서 호버링이 가능하게 하는 옵티컬 플로어 센서를 장착아여 조작을 보다 쉽게 한다. 또한, 외부 비행 시 GPS센서를 사용하여 좌표지정을 통한 자동비행을 가능하게 하고 아두이노의 센서와 펌프를 적용한 "오토파일럿이 가능한 시설물 관리 드론" 기술을 제안한다. 기존의 드론과 다르게 카메라와 센서를 이용해 시설물 관리를 대신하고, 외부 시설물 관리나 농업 등에서 사용할 때 좌표를 지정해 사용자가 직접 조작하지 않아도 지정한 좌표로 드론이 이동하여 관리 및 임무를 수행한다. 센서들의 값을 앱으로 전송받아 핸드폰으로 받아 볼 수 있다.

  • PDF