• 제목/요약/키워드: 아두이노 기반 설계

Search Result 80, Processing Time 0.028 seconds

A Design of Vehicle for Mobile 3D Printer (이동형 3D 프린터를 위한 차량 설계)

  • Jun-Young Park;Ha-Yeon Kim;Seung-Hoon Baek;Min-Seok Kim;Seung-Dae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.177-184
    • /
    • 2023
  • In this paper, based on Arduino, a vehicle is installed at the bottom of the 3D printer so that Arduino controls the vehicle that can expand the moving space. A stepping motor was mounted on the front wheel of the vehicle and precisely controlled using a motor driver. As a result, when moving 5cm, 25cm, and 50cm, the mean value of error rate was 0.6%, 0.04%, and 0.02%, respectively, to enable accurate distance control.

Design and Implementation of Pet Pill and Food Feeder Based on IoT (IoT 기반 약, 사료 혼합 자동급식기 설계 및 구현)

  • Kim, Suhyun;Sin, Jisun;Moon, Yerim;Kwon, Koojoo
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.315-318
    • /
    • 2020
  • Due to the increase in single-person households among the people who have companion animals, it is difficult to feed them to companion animals in the absence of the owner, so an automatic feeding machine was designed. In this paper, we propose an automatic feeding machine that has a drug distribution function as well as feeds using the Arduino platform. It is expected that in the proposed automatic feeding machine, users can access the food service through the website, and experience the convenient and extended food service function through the automatic dispensing system that combines the two materials.

Design of Embedded Security Controller Based on Client Authentication Utilizing User Movement Information (사용자의 이동정보를 활용한 클라이언트 인증 기반의 임베디드 보안 컨트롤러 설계)

  • Hong, Suk-Won
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • A smart key has been used in a variety of embedded environments and there also have been attacks from a remote place by amplifying signals at a location of a user. Existing studies on defence techniques suggest multiple sensors and hash functions to improve authentication speed; these, however, increase the electricity usage and the probability of type 1 error. For these reasons, I suggest an embedded security controller based on client authentication and user movement information improving the authentication method between a controller and a host device. I applied encryption algorithm to the suggested model for communication using an Arduino board, GPS, and Bluetooth and performed authentication through path analysis utilizing user movement information for the authentication. I found that the change in usability was nonsignificant when performing actions using the suggested model by evaluating the time to encode and decode. The embedded security controller in the model can be applied to the system of a remote controller for a two-wheeled vehicle or a mobile and stationary host device; in the process of studying, I found that encryption and decryption could take less then 100ms. The later study may deal with protocols to speed up the data communication including encryption and decryption and the path data management.

A Design and Implementation of Chick Incubation System Based on IoT

  • Sejong Lee;Sol Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, we design and implement an Internet of Things (IoT)-based chick incubation system. The system consists of three key components: the IoT incubator, the IoT server system, and the smartphone application. The IoT incubator is composed of an Arduino board, temperature and humidity sensors, a temperature and humidity controller, a ventilation controller, and an egg turning controller. The temperature and humidity sensors measure the temperature and humidity inside the IoT incubator and send the data to the temperature and humidity controller on the Arduino board. Additionally, it provides the function of transmitting temperature, humidity, and control history data to the IoT server via WiFi. It also offers automatic control of ventilation, egg turning, and temperature and humidity on a daily basis. The IoT server system receives data from the incubator, stores it in a database, and provides query data upon request from the smartphone. The smartphone application retrieves historical data through the server and monitors the temperature and humidity data of the IoT incubator in real-time, controlling the IoT incubator to ensure that the set temperature and humidity ranges are maintained. If the temperature and humidity data deviate from the set ranges, it sends alarms and emergency messages to the user. The IoT-based chick incubation system developed in this paper is a low-cost model due to its reduced manufacturing cost, making it highly beneficial for self-sustaining poultry farms.

The design of Smart flowerpot management system (스마트 화분관리 시스템 설계)

  • Jeon, Pil-kyeong;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.133-135
    • /
    • 2015
  • This paper is about the design of flowerpot management system which allows you to manage the flowerpot more efficiently and conveniently using Internet of Things when you start to grow plants. IoT connects all things to the network to provide various services to users, it has recently been focused on the center of the IT convergence techniques. So by using the realization sensor based IoT technology the need for research and development of IoT technologies were designed for the system. Basically, Device is using soil humidity sensor and Arduino, Android smart phone and smart light bulb. Transmit the humidity value of the flowerpot that measured by the sensor in a wireless communication, by controlling the state according to the value of the humidity, users can be provided a visual information and set up a flowerpot management and plan.

  • PDF

Development and Application of a Turtle Ship Model Based on Physical Computing Platform for Students of Industrial Specialized High School (공업계 특성화고 학생을 위한 피지컬 컴퓨팅 플랫폼 기반의 모형 거북선 개발 및 적용)

  • Kim, Won-Woong;Choi, Jun-Seop
    • 대한공업교육학회지
    • /
    • v.41 no.2
    • /
    • pp.89-118
    • /
    • 2016
  • In this study, the model of Turtle Ship, which is evaluated as one of the world's first ironclad ship in battle as well as the traditional scientific and technological heritage in Korea, was combined with the Physical Computing Platform(Arduino and App Inventor) that enables students to learn the basic concepts of IT in an easy and fun way. Thus, this study contrived the Physical Computing Platform-based Turtle Ship model which will make the students of Industrial Specialized High School develop the technological literacy and humanities-based knowledge through flexible education out of stereotype and single subject as well as enhance the potential of creative convergence education. The following is a summary of the main results obtained through this study: First, Arduino-based Main-controller design and making is helpful to learn of the hardware and software knowledge about EEC(Electron Electronics Control) and to confirm the basic characteristics and performance of interaction of Arduino and actuators. Second, The fundamental Instructional environments of abilities such as implementing EEC systems, thinking logically, and problem-solving skills were provided by designing of pattern diagram, designing an actuator circuit and making, the creation of sketches as technical programming and developing of mobile app. Thirdly, This is physical computing platform based Turtle ship model that will enable students to bring up their technological literacy and interest in the cultural heritage.

Implementation of Automatic Height Adjustment System (자동 레벨 컨트롤 적재물 운반 시스템의 구현)

  • Lim, Seong-Jae;Lee, Tae-Geun;Jang, Jin-Nyeong;Ko, Ye-Eun;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.133-138
    • /
    • 2022
  • In this paper we present the system we produced to help workers at logistic centers and prevent accidents, in which they could get hurt. As a base we use the main control device, named Arduino uno, which measures the weight by using load cells. When operating with the system, by placing object on it, the system measures the weight of the object and keeps the highest point at the same height by lowering its board. This improves the convenience while placing and removing objects from the board. If the weight of the placed object is exceeding the set value the board will also lower itself to secure the safety. By using a line tracer system, the objects are being moved only on a set route with the goal to make it even more comfortable to use.

A Study on the Implementation of a IoT Sensor-based Smart Compression System (센서 기반의 스마트 압축 시스템 구현에 대한 연구)

  • Oh, Eun-Young;Yoon, Keun-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1287-1294
    • /
    • 2021
  • This paper is a study on the implementation of a sensor-based smart compression system for improving home and street environments. Since modernization, the amount of garbage has been increasing every year, and this has seriously adversely affected not only people but also ecosystems such as marine pollution and soil pollution. In particular, in large cities with large floating populations, garbage is dumped on the streets without proper measures to deal with the amount of waste generated. In order to improve this problem, this paper intends to implement a system with automatic compression and opening/closing functions using sensors. This system is designed to activate automatic opening/closing function through an infrared sensor, and automatically opening and closing when the inclination is changed using an impact sensor. In addition, by installing a distance sensor, the amount of internal waste can be easily monitored from the outside, and a manual compression switch and a manual opening/closing switch is separately designed to enable opening and closing and compression as needed to increase the effectiveness.

Design and Implementation of Cost-effecive Public Bicycle Sharing System based on IoT and Access Code Distribution (사물 인터넷과 액세스 코드 배포 기반의 경제적인 공공 자전거 공유 시스템의 설계 및 구현)

  • Bajracharya, Larsson;Jeong, Jongmun;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1123-1132
    • /
    • 2018
  • In this paper, we design and implement a public bicycle sharing system based on smart phone application capable of distributing access codes via internet connection. When smartphone user uses the application to request a bicycle unlock code, server receives the request and sends an encrypted code, which is used to unlock the bicycle at the station and the same code is used to return the bicycle. The station's hardware prototypes were built on top of Internet devices such as raspberry pi, arduino, keypad, and motor driver, and smartphone application basically includes shared bike rental and return functionality. It also includes an additional feature of reservation for a certain time period. We tested the implemented system, and found that it is efficient because it shows the average of 3-4 seconds delay. The system can be implemented to manage multiple bikes with a single control box, and as the user can use a smartphone application, this makes the system more cost effective.

A navigation and Accident Management System on IOT Based Bicycle (IoT 기반 자전거 경로안내 및 사고대처 시스템)

  • Lee, Jae Yoon;Choi, Seung Deok;Byun, Ji Mi;Lee, Ji Soo;Kim, Woongsup
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.1061-1064
    • /
    • 2017
  • 자전거 이용자 수가 천만 명을 넘으면서, 자전거 사업은 우리의 삶에 중요 요소로 자리 잡게 되었다. 본 연구에서는 자전거 사용자들에게 편의를 제공하기 위해 GPS정보를 기반으로 한 자전거 전용 네비게이션과 사용자들을 자전거 사고로부터 보호할 수 있는 사고 대처 시스템을 개발하였다. 이를 위해 우리는 아두이노기반의 시스템을 토대로 개발되었으며 스마트폰과 블루투스 송신기술을 사용하여 다양한 정보를 주고 받을 수 있도록 설계하였다. 우리의 사고 대처시스템은 실시간으로 자전거 운행 정보를 공유하도록 하여 보다 효율적으로 자전거 사고를 예방 할 수 있도록 하는데 그 목적이 있다. 이를 위해 우리의 시스템은 아두이노를 통해 측정한 센서 값들을 스마트폰을 통해 자전거 사용자들에게 실시간으로 공유되도록 하고 이를 통해 다른 자전거 사용자들이 자전거 도로의 상태, 사고 내용들을 파악하도록 하여 안전하고 편리한 자전거 운행이 가능하도록 하여 향후 자전거 사업이 발전시킬 수 있는 계기를 마련할 것으로 기대한다.