• Title/Summary/Keyword: 쓰기 참조

Search Result 35, Processing Time 0.021 seconds

Design of a Memory Management Policy Separating the Characteristics of Read and Write References (읽기 참조와 쓰기 참조의 특성을 구분하는 메모리 관리 정책의 설계)

  • Hyokyung, Bahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.1
    • /
    • pp.71-76
    • /
    • 2023
  • Recently, a memory management strategy that utilizes read and write references separately is attracting attention. This is due to the emergence of new storage media with asymmetric read/write latencies and different read/write access characteristics of software. Existing research assumes that operating systems can differentiate between read/write references that occur on each memory page, but most memory architectures do not support a way to distinguish them. Unlike previous studies, this paper proposes a software method that reflects the read/write characteristics of page references by utilizing the reference and modified bits of each page. Simulations show that the proposed policy has almost similar effects to existing studies with hardware support.

Analyzing Virtual Memory Write Characteristics and Designing Page Replacement Algorithms for NAND Flash Memory (NAND 플래시메모리를 위한 가상메모리의 쓰기 참조 분석 및 페이지 교체 알고리즘 설계)

  • Lee, Hye-Jeong;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.543-556
    • /
    • 2009
  • Recently, NAND flash memory is being used as the swap device of virtual memory as well as the file storage of mobile systems. Since temporal locality is dominant in page references of virtual memory, LRU and its approximated CLOCK algorithms are widely used. However, cost of a write operation in flash memory is much larger than that of a read operation, and thus a page replacement algorithm should consider this factor. This paper analyzes virtual memory read/write reference patterns individually, and observes the ranking inversion problem of temporal locality in write references which is not observed in read references. With this observation, we present a new page replacement algorithm considering write frequency as well as temporal locality in estimating write reference behaviors. This new algorithm dynamically allocates memory space to read/write operations based on their reference patterns and I/O costs. Though the algorithm has no external parameter to tune, it supports optimized implementations for virtual memory systems, and also performs 20-66% better than CLOCK, CAR, and CFLRU algorithms.

The Effect of Absorbing Hot Write References on FTLs for Flash Storage Supporting High Data Integrity (데이터 무결성을 보장하는 플래시 저장 장치에서 잦은 쓰기 참조 흡수가 플래시 변환 계층에 미치는 영향)

  • Shim, Myoung-Sub;Doh, In-Hwan;Moon, Young-Je;Lee, Hyo-J.;Choi, Jong-Moo;Lee, Dong-Hee;Noh, Sam-H.
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.336-340
    • /
    • 2010
  • Flash storages are prevalent as portable storage in computing systems. When we consider the detachability of Flash storage devices, data integrity becomes an important issue. To assure extreme data integrity, file systems synchronously write all file data to storage accompanying hot write references. In this study, we concentrate on the effect of hot write references on Flash storage, and we consider the effect of absorbing the hot write references via nonvolatile write cache on the performance of the FTL schemes in Flash storage. In 80 doing, we quantify the performance of typical FTL schemes for workloads that contain hot write references through a wide range of experiments on a real system environment. Through the results, we conclude that the impact of the underlying FTL schemes on the performance of Flash storage is dramatically reduced by absorbing the hot write references via nonvolatile write cache.

Buffer Cache Management of Smartphones Exploiting Write-Only-Once Characteristics (1회성 쓰기 참조 특성을 고려하는 스마트폰 버퍼캐쉬 관리 기법)

  • Kim, Dohee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.129-134
    • /
    • 2015
  • This paper analyzes file access characteristics of smartphone apps and finds that a large portion of file writes are performed only once. Based on this observation, we present a new buffer cache management scheme that considers this characteristics. Buffer cache improves storage performance by maintaining hot file data in memory thereby servicing subsequent requests without storage accesses. However, it should flush modified data to storage in order to resist system crashes. The proposed scheme evicts cache data that has been written only once upon flushes, thus improving cache space utilization. Simulation experiments show that the proposed scheme improves cache hit ratio by 5-33% and power consumption by 27-92%.

Dual Write Buffer Algorithm for Improving Performance and Lifetime of SSDs (이중 쓰기 버퍼를 활용한 SSD의 성능 향상 및 수명 연장 기법)

  • Han, Se Jun;Kang, Dong Hyun;Eom, Young Ik
    • Journal of KIISE
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • In this paper, we propose a hybrid write buffer architecture comprised of DRAM and NVRAM on SSD and a write buffer algorithm for the hybrid write buffer architecture. Unlike other write buffer algorithms, the proposed algorithm considers read pages as well as write pages to improve the performance of storage devices because most actual workloads are read-write mixed workloads. Through effectively managing NVRAM pages, the proposed algorithm extends the endurance of SSD by reducing the number of erase operations on NAND flash memory. Our experimental results show that our algorithm improved the buffer hit ratio by up to 116.51% and reduced the number of erase operations of NAND flash memory by up to 56.66%.

2WPR: Disk Buffer Replacement Algorithm Based on the Probability of Reference to Reduce the Number of Writes in Flash Memory

  • Lee, Won Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • In this paper, we propose an efficient disk buffer replacement policy which improves hit ratio and reduces writing operations of flash based storages. The flash based storage has many advantages, including a small form factor, non-volatility and high reliability, but there are problems caused by own limitations, like not-in-place update, short life cycle and asymmetric I/O latencies. To redeem these problems, this paper proposes the write weighted probability of reference(2WPR) policy. 2WPR policy predicts re-referencing probability and calculates localities of each page. Furthermore, by weighting write operations to every pages, 2WPR can reduce write operations to flash based storage. In addition, we can improve the performance with higher hit ratio and reduce the number of write operations and consequently shorten the latencies of each operation. The results show that our policy provides improvements of up to 10% for the hit ratio with the reduction of up to 5% for the flash writing operation compared with other policies.

Analysis of Memory Write Reference Patterns in Mobile Applications (모바일 앱의 메모리 쓰기 참조 패턴 분석)

  • Lee, Soyoon;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.65-70
    • /
    • 2021
  • Recently, as the number of mobile apps rapidly increases, the memory size of smartphones keeps increasing. Smartphone memory consists of DRAM and as it is a volatile medium, continuous refresh operations for all cells should be performed to maintain the contents. Thus, the power consumption of memory increases in proportion to the DRAM size of the system. There are attempts to configure the memory system with low-power non-volatile memory instead of DRAM to reduce the power consumption of smartphones. However, non-volatile memory has weaknesses in write operations, so analysis of write behaviors is a prerequisite to realize this in practical systems. In this paper, we extract memory reference traces of mobile apps and analyze their characteristics specially focusing on write operations. The results of this paper will be helpful in the design of memory management systems consisting of non-volatile memory in future smartphones.

Management Technique of Buffer Cache for Rendering Systems (렌더링 시스템을 위한 버퍼캐쉬 관리기법)

  • Shin, Donghee;Bahn, Hyokyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.155-160
    • /
    • 2018
  • In this paper, we found that buffer cache in general systems does not perform well in rendering software, and presented a new buffer cache management scheme that resolves this problem. To do so, we collected various file I/O traces of rending software and analyzed their characteristics. From this analysis, we observed that file I/Os in rendering consist of long loops, short loops, random accesses, and write-once accesses. Based on this observation, we presented a buffer cache management scheme that allocates cache space to each access types and manages them appropriately, thereby improving the buffer cache performances by 19% on average and up to 55%.

The Least-Dirty-First CLOCK Replacement Policy for Phase-Change Memory based Swap Devices (PCM 기반 스왑 장치를 위한 클럭 기반 최소 쓰기 우선 교체 정책)

  • Yoo, Seunghoon;Lee, Eunji;Bahn, Hyokyung
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1071-1077
    • /
    • 2015
  • In this paper, we adopt PCM (phase-change memory) as a virtual memory swap device and present a new page replacement policy that considers the characteristics of PCM. Specifically, we aim to reduce the write traffic to PCM by considering the dirtiness of pages when making a replacement decision. The proposed policy tracks the dirtiness of a page at the granularity of a sub-page and replaces the least dirty page among the pages not recently used. Experimental results show that the proposed policy reduces the amount of data written to PCM by 22.9% on average and up to 73.7% compared to CLOCK. It also extends the lifespan of PCM by 49.0% and reduces the energy consumption of PCM by 3.0% on average.

Page Replacement Policy for Memory Load Adaption to Reduce Storage Writes and Page Faults (스토리지 쓰기량과 페이지 폴트를 줄이는 메모리 부하 적응형 페이지 교체 정책)

  • Bahn, Hyokyung;Park, Yunjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • Recently, fast storage media such as phage-change memory (PCM) emerge, and memory management policies for slow disk storage need to be revisited. In this paper, we propose a new page replacement policy that makes use of PCM as a swap device of virtual memory systems. The proposed policy aims at reducing write traffic to the swap device as well as reducing the number of page faults pursued by traditional page replacement policies. This is because a write operation in PCM is slow and PCM has limited write endurances. Specifically, the proposed policy focuses on the reduction of page faults when the memory load of the system is high, but it aims at reducing write traffic to storage when free memory space is sufficient. Simulation experiments with various memory reference traces show that the proposed policy reduces write traffic to PCM without performance degradations.