• Title/Summary/Keyword: 쐐기형

Search Result 202, Processing Time 0.032 seconds

Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume (눈물양에 따른 토릭 소프트콘택트렌즈의 축 회전양 변화)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.4
    • /
    • pp.445-454
    • /
    • 2015
  • Purpose: The present study was aimed to investigate the effect of tear volume on a change of axial rotation according to wearing time of toric soft contact lens and gaze directions. Method: Toric soft contact lenses with double thin zone design applied on 62 eyes. Then, changes in non invasive tear film break-up time and the rotational direction/amount of lens when changing gaze direction were respectively measured after 15 minutes and 6 hours of lens wear. Results: Lens rotation to temporal direction was more found when changing gaze direction after lens wear. However, its rotation was varied according to wearing time and the subjects' tear volume. Furthermore, the frequency of lens rotation to temporal direction was higher in dry eyes compared with normal eyes at nearly all gaze directions after 15 minutes and 6 hour of lens wear. The rotational amount of lens was generally greater in dry eyes after 15 minutes of lens wear. However, its difference between normal eyes and dry eyes was not great after 6 hours of lens wear. Conclusion: The present study revealed that axial rotation of toric soft contact lens was varied according to the wearer's tear volume and lens rotational patterns at the initial, and extending periods of lens wear were different. The change in rotational pattern of toric soft contact lens from these results means the possibility of visual change after extending lens wear, and the identification of its correlation with tear volume suggests the necessity of considering factors for choosing appropriate toric soft contact lens.

The Biological Stability of Immediate Placement of Tapered Implants in Tooth Extraction Sites (발치와에 즉시 식립한 쐐기형 임플란트의 생물학적 안정성에 관한 전향적 연구)

  • Park, Ja-young;Bae, Ahran;Kim, Hyung-Seub;Kwon, Yong-Dae;Lee, Baek-Soo;Kwon, Kung-Rock
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.139-155
    • /
    • 2009
  • Objective : To assess the biological stability of immediate transmucosal placement of tapered implants into tooth extraction sockets. Material and methods : Following tooth extraction, tapered implants were immediately placed into the sockets. Teeth with evidence of acute periapical pathology were excluded. After implant placement, sutured allowing a non-submerged, transmucosal healing. Standardized radiographs were obtained every visiting from baseline to 32 weeks after implant placment. Changes in depth of the distance from the implant shoulder (IS) and from the alveolar crest (AC) to the bottom of the defect (BD) were assessed. Results : Thirteen patients (10 males and 3 females) were enrolled and followed. They contributed with 15 tapered implants. extraction iste displayed sufficient residual bone volume to allow primary stability of all implants. The mean surgery time was $41{\pm}10.0$ mins. All implants healed uneventfully yielding a survival rate of 100%. Mean ISQ values were relatively stable. Interproximal crestal bone decreased $1.69{\pm}1.2mm$ (mesial), $1.65{\pm}1.2mm$ (distal) from baseline to 32-week follow-up. No statistically significant changes with respect to FMPS, FMBS, PPD and width of KG were observed. Conclusions: Immediate transmucosal implant placement represented a predictable treatment option for the replacement of teeth lost due to reasons including fractures, endodontic failures and caries.

Analysis of Flow Around A Rigid Body on Water-Entry & Exit Problems (접수와 이수 문제에서 강체주위 유동해석)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.37-47
    • /
    • 1999
  • A Finite Volume Method for the discretization of the two-dimensional incompressible Navier-Stokes equation is used to analyse water entry & exit problems in a generalized coordinate system. The free-surface deformations generated by the water entry or exit of a rigid body are simulated by the Level-Set scheme[11]. In the water entry problems for a wedged section and a flared-ship section, the calculation results of water impact force are compared with the experimental results[5] and the time varying free-surface deformations and flow characteristics of the water exit of a cylinder are investigated.

  • PDF

Comparative Study on the Urohyal of the Subfamily Gobioninae of Korea (한국산(韓國産) 모래무지아과(亞科)(Gobioninae) 어류의 미설골(尾舌骨)에 대한 비교연구)

  • Kim, Ik-Soo;Kang, Eon-Jong
    • Korean Journal of Ichthyology
    • /
    • v.1 no.1_2
    • /
    • pp.24-34
    • /
    • 1989
  • We reexamined the skulls of 14 gobionine genera of Korea to study taxonomic status of Gobioninae. The character transformation series found in the morphology of urohyal was very distinct among other skeletal characters. The gobioninae fishes of Korea were divided into 4 groups based on their morphology of urohyal as follows ; 1. Coreoleuciscus, Gnathopogon group ; The horizontal plate of urohyal has a ellipse shape with posterior edge wedged and the length is longer than that of vertical plate. 2. Hemibarbus, Squalidus group ; The horizontal plate has a elongated rhombeus shape with posterior edge pointed and the length is shorter than that of vertical plate. 3. Sarcocheilichthys, Pseudopungtungia, Pseudorasbora, Pungtungia group ; the horizontal plate has a expanded rhombeus shape, the length is longer than that of vertical plate, the hypohyal attatchment is not bifurcated, and the profile of the horizontal and vertical plate curved ventrally. 4. Ladislavia, Gobiobotia, Abbottina, Hicrophysogobio, Pseudogobio, Saurogobio group ; The horizontal plate has a pin or wedge shape expanded anteriorly, the length is shorter than that of vertical plate, and the hypohyal attatchment is thickened laterally. This results agreed with those by the adductor mandibulae complex, the geniohyoideus of cephalic muscles, and the cephalic-lateral line canals.

  • PDF

Sediments and Design Considerations in the Forebay of Stormwater Wetland (강우유출수 처리목적 인공습지 침강지의 퇴적물 특성 및 설계 적정성에 관한연구)

  • Park, Kisoo;Cheng, Jing;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.223-235
    • /
    • 2012
  • In this paper, field study results about accumulation of sediments and its property in the forebay of wetland aiming at stormwater from rural area wherein intensive cow feeding lots are operated are provided. In addition, some design aspects are discussed. Amount of sediment generation in the longitudinal direction of forebay was found to be affected by hydrological factors such as rainfall depth and intensity. Nutrient contents in the sediments of this wetland were 10 times higher than those in stormwater wetland in rural area without animal-feeding lot. Total-Pb and As contents show similar level to values from the soils of surrounding watershed, but Total-Cu content was higher due to the animal feeding lots. Yearly amount of sediment generation, its depth and volume were estimated to 13tons, 23cm, and $65m^3$. Based on these results and recommended guideline by Korean Ministry of Environment, dredging frequency was found to be about 2.7years. The shape of forebay has to be carefully designed to deal with a great change in flow rate. According to the results of sediment depth analysis, instead of the present rectangular, wedge-shape forebay is more desirable in handling scouring caused by high flows.

An experimental study on the operation mode of rapid flooding protection system in tunnel (축소모형실험을 통한 터널 내 급속침수 차폐자동화 시스템 작동형태에 대한 연구)

  • Kim, Yeon-Deok;Kong, Min-Teak;Hwang, Beoung-Hyeon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1147-1159
    • /
    • 2018
  • This study focuses on the verification of a rapid protection automation system using an inflatable structure. The inflatable structure is an automatic rapid protection system against human and material damage when the subsea tunnel is flooded. Especially, it is essential for construction and operation of subsea tunnels. In this study, we have experimentally verified the rapid protection automation system using the inflatable structure designed for this problem. In order to verify this, a model tunnel with a 40: 1 reduction ratio was constructed, and air pressure of 0.1 bar and 0.15 bar was injected to divide the tunnel according to the expansion rate at 10 sec and 20 sec. According to the results of the study, the protection efficiency was better at 0.15 bar than 0.1 bar when the expansion structure was expanded, and the protection efficiency and influent control efficiency were different according to the pneumatic injection time of the inflating structure. As a result of this study, it was found that the higher the internal air pressure of the inflated structure and the faster the inflation of rate, the more effectively the inflated structure was inflated. As a result of this study, it is necessary to further study the wedge type structure which is useful for the storage method of expansion structure, shape and expansion derivative, inhibition of expansion structure during protection and control of inflow water.

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF

Tegumental Ultrastructures of Spirometra erinacei by Developmental stages (만손열두조충의 발육단계별 표피 미세구조)

  • Sohn, Woon-Mok;Lee, Jin-Ha
    • Applied Microscopy
    • /
    • v.35 no.1
    • /
    • pp.41-56
    • /
    • 2005
  • Present study was performed to observe the tegumental ultrastructures by the developmental stages which derived from the experimental life cycle of Spirometra erinacei in laboratory conditions. In SEM view, coracidium was spherical in shape with numerous cilia, and its surface was covered with long cilia, tuberclelike projections with millet-like processes, and small holes. The body surface of procercoid was covered with numerous pointed microtriches except that of frontal pit with stout spine-like ones. However that of cercomer was covered with somewhat sparse blunt-tiped microtriches. Plerocercoids of 3 days old resembled the mature procercoid in shape, and their frontal pits were covered with numerous stout spine-like microtriches. However frontal pit and body surface in more than 5 days old ones were covered with conoid microtriches. On the surface of adult scolex, hairly long filamentous and stout short microtriches were mixedly distributed. Filamentous microtriches were more densely distributed in the anterior portion than in the posterior of scolex. The neck and immature proglottid were covered with only stout short conoid microtriches. In TEM view of coracidia, embryophore and oncosphere were obviously distinguished. The embryophore contained numerous glycogen particles, mitochondria and lipid granules. The cilia on the surface of embryophore rooted in the coracidial sheath, and consisted of 9 pairs of microtubules and 2 core complex. The oncosphere was covered with a thin and unarmed tegument, and was multi-nucleated. The protoplasmic layer of procercoid and plerocercoid consisted of disc-shaped bodies, vacuoles and mitochondria. Their tegumental cells commonly retained a nucleus, granular endoplasmic reticulums and secretory granules. The protoplasmic layer of plerocercoid was more compacted than that of procercoid. From the above results, it was confirmed that the tegumental ultrastructures are something different according to the developmental stages of S. erinacei.