• Title/Summary/Keyword: 쐐기형

Search Result 203, Processing Time 0.025 seconds

Two-dimensional Model Testing System for Analysis of PVD Installation and Soil Disturbance (PVD 설치 및 지반교란의 분석을 위한 2차원 모형실험 시스템)

  • Kim, Jae Hyun;Choo, Yun Wook;Park, Hyun-Il;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.149-157
    • /
    • 2012
  • In order to investigate the soil disturbance induced by anchor-shoe for PVD installation and the anchoring mechanism, a new two dimensional testing system was developed. By using the developed testing system, 1g and centrifuge model tests were performed, simulating the driving-retrieval process of both conventional symmetric anchor shoe and new asymmetric anchor shoe. Various size anchor-shoes were simulated and the results were compared. The images recorded during the installation were analyzed by image processing technique. The results of the image analysis presented the clay disturbance depending on the size and type of anchor shoe. In addition, from the retrieval process, the anchoring mechanism was revealed and the holding capacity was measured. As results, the size of anchor shoe influences the soil disturbance and holding capacity. The new asymmetric anchor shoe reduces the soil disturbance and improves anchoring performance.

Shape Optimization for a Jaw Using Design Of Experiments (실험계획법을 이용한 조(Jaw)의 형상최적설계)

  • Bang, Il-Kwon;Kang, Dong-Hun;Han, Dong-Seop;Han, Geun-Jo;Lee, Kwon-Hee
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.685-690
    • /
    • 2006
  • The rail clamp is the device to prevent that a crane slips along rails due to the wind blast as well as to locate the crane in the set position for loading and unloading containers. The wedge typed rail clamp should be designed to consider the structural stability and the durability because it compresses both rail side with large clamping force by the wedge working as the wind speed increases. In this research, the design of experiments(DOE) and the variation technology(VT) built in ANSYS WORKBENCH are utilized to determine the optimum shape of a jaw. The optimum results obtained by two methods are compared and examined.

Dynamic Stability of a Railroad Bridge Using Bi-prestressing Technology (바이프리스트레싱 기법을 이용한 철도교량의 동적안정성)

  • Choi, Sanghyun;Lee, Changsoo;Lim, Jaehoon;Lee, Seungjoon;Yang, Sungdon
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.188-194
    • /
    • 2013
  • As the high speed railroad line increases, researches on developing a more economic high speed railroad bridge system have been actively conducted. In this paper, a new type of prestressed concrete girder based on the bi-prestressing technique, which can introduce additional prestress, is presented. The additional prestress can be introduced using a wedge-shaped pin bar into the upper part of the girder section. The applicability of the new girder technique to the high speed railroad bridge is verified via the dynamic stability analysis. Dynamic moving load analyses using the KTX train load are conducted on bridge systems with the span lengths of 30m, 35m, and 40m, respectively. The results of the analysis show that all bridge systems satisfy the limits prescribed in the design specifications to ensure structural stability, driving safety, and ride quality.

Shape Optimization for a Jaw Using DOE (실험계획법을 이용한 조(Jaw)의 형상최적설계)

  • Lee Kwon-Hee;Bang Il-Kwon;Han Dong-Seop;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.331-336
    • /
    • 2006
  • The rail clamp is the device to prevent that a crane slips along rails due to the wind blast as well as to locate the crane in the set position for loading and unloading containers. The wedge type rail clamp should be designed to consider the structural instability and the durability because it compresses both rail side with large clamping force by the wedge working as the wind speed increases. In this research, there are two methods which are design of experiment and variation technology in used commercial software and shape optimization was performed. The optimum results obtained by the two methods are compared and examined.

  • PDF

FREE VASCULARIZED SCAPULAR FLAP FOR MANDIBULAR RECONSTRUCTION (유리 혈관화 견갑골피판을 이용한 하악골 복합결손 재건)

  • Park, Kwang
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.18 no.3
    • /
    • pp.339-347
    • /
    • 1996
  • Prior to the advent of microvascular surgery, conventional prosthetic rehabilitation offered limited success to re-establish the physiological function in oromaxillofacial reconstruction. Microvascular surgery provided a new frontier and there are multitude of flaps. Each flap has the benefits and limitation for the application to various defects. Advantage of the scapular flaps over other reconstructive methods include the ability to design multiple cutaneous panels on a separate vascular pedicle allowing improvement in three-dimensional relationship and osseointegrated implants can be palced to restore occlusal and masticatory function. Here I present the detailed description of the important surgical anatomy as well as graft dissection and clinical application of free vascularized scapular flap.

  • PDF

Pullout Resistance Characteristics of the Wedge-shaped Ground Anchor (쐐기형 그라운드앵커의 인발 거동 특성)

  • Kim, Jung-Moo;Chung, Won-Yong;Yoon, Yong-Soo;Chung, Min-Kyu;Jang, Soon-Ho;Lee, Yong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1060-1064
    • /
    • 2010
  • Ground anchors are mostly used to improve the resistance capacity of retaining walls. The end of the anchor is connected to retaining wall through tendons and the forces in tendons are transferred to ground. In this study, we plan that the new anchor system increases the tension force in tendons and improves the pullout resistance characteristics of the system. In order to increase the pullout resistance capacity of existing anchor system, the new anchor system is made by attaching four steel sticks to the tip of anchor end. So the field test results showed that the pullout resistance capacity of the wedge-shaped ground anchor was acceptable to elastic displacement range.

  • PDF

The Results of the First Ray Forefoot Osteotomy Using Low Profile Wedge Plate without a Bone Grafting for Pes Planus Correction (제 1열 전족부 절골술을 통한 평발 교정에 있어 골이식 없이 사용한 소형 쐐기형 금속판의 치료 결과)

  • Choi, Jun Young;Shin, Myung Jin;Suh, Jin Soo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2017
  • Purpose: We retrospectively analyzed the radiographic and clinical results after the first ray of forefoot osteotomy using low profile wedge plate without additional cancellous bone grafting for pes planus correction. Materials and Methods: Twenty-four patients were enrolled in this study. Medial cuneiform opening wedge osteotomy was performed in 12 patients (Cotton osteotomy, group C) and first metatarsal base osteotomy was performed in 12 patients (group MT). Results: On average, the wedge size was 5.61 mm (5~6 mm). The mean time to radiographic union was 3.18 and 3.27 months in groups C and MT, respectively. Postoperative talonavicular coverage angle, talo-first metatarsal angle (anteroposterior), talo-first metatarsal angle (lateral), talo-calcaneal angle (lateral), medial cuneiform height, and American orthopaedic foot, as well as ankle society midfoot scale were significantly improved in both groups. Nonunion, delayed union or fixation failure was not presented in our series. Conclusion: We have shown that low profile wedge plate was effective in the case of first ray forefoot osteotomy for pes planus correction without any additional cancellous bone grafting.

Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect (받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Yoon, Myung-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

Analysis of Collapse Shape and Cause in the Highway Tunnel (고속도로터널의 붕락유형과 원인 분석)

  • Kim, Nag-Young;Kim, Sung-Hwan;Chung, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.13-24
    • /
    • 2000
  • The collapse shapes and causes of tunnel in the highway were analyzed and reinforced methods of tunnel were investigated in the paper. Collapse shapes of tunnel are divided into three types such as subsurface failure, small scale wedge failure and slickenside strata failure. These three shapes consist of 35%, 50%, and 15%, respectively. The 85% of collapse was located near the entrance and exit of tunnel. The 15% was located at the intersection of emergency laybys. When tunnel collapses are analyzed by the failure concept, sliding failure amounts to more than 83%.

  • PDF

Heat/Mass Transfer and Pressure Drop in A Square Duct with V-Shaped Ribs (쐐기형 요철이 설치된 사각덕트에서의 열/물질전달 및 압력강하 특성)

  • Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1542-1551
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer characteristics and pressure drop inside the rib-roughened cooling passage of gas turbine blades. The internal cooling passage is simulated using a square duct with h- and V-shaped rectangular ribs which have a 60。attack angle. A naphthalene sublimation technique is employed to determine the detailed local heat/mass transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wail. The secondary flow patterns and the local heat transfer in the duct are changed significantly according to the rib orientation. A square duct with ∧ - and V-shaped ribs have two pairs of secondary flow due to the rib arrangement. Therefore, the average heat/mass transfer coefficients and pressure drop of ∧ - and V-shaped ribs are higher than those of the continuous ribs with 90$^{\circ}$ and 60$^{\circ}$attack angles. The ∧-shaped ribs have higher heat/mass transfer coefficients than the V-shaped ribs, and the uniformity of heat/mass transfer coefficient are increased with the discrete ribs due to the flow leakage and acceleration near the surface.