• Title/Summary/Keyword: 쌍적분방정식

Search Result 9, Processing Time 0.025 seconds

Investigation on Derivation of the Dual Integral Equation in the Spectral Domain from Wiener-Hopf Integral Equation (Wiener-Hopf 적분방정식으로부터 파수영역에서의 쌍적분 방정식 유도에 관한 검토)

  • 하헌태;라정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.8-14
    • /
    • 1998
  • The derivation of the dual integral equation in the spectral domain, which has total fields of the interfaces as unknowns, is investigated. It is analytically shown that the derivation of the dual integral equation is equivalent to deriving the Helmholtz-Kirchhoff integral equation from the Wiener-Hopf integral equation.

  • PDF

Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part II : H-Polarized Plane Wave Incidence (쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, II : H-분극된 평면파 입사시)

  • Ha, Huen-Tae;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.22-28
    • /
    • 1999
  • An exact asymptotic solution for a perfect conducting wedge with H-polarized plane wave incidence is analytically derived by substituting the exact boundary fields of the perfeet conducting wedge, the well known series solution, into the dual integral exquation in the spectral domain. The validity of the derivation is assured by showing that the analytic integration gives the null fields in the complementary region. The merits taking the dual integral equation for derivation of an asymptotic solution for a perfect conduction wedge is discussed.

  • PDF

Derivation of an Asymptotic solution for a Perfect Conducting Wedge by Using the Dual Integral Equation, Part I : E-Polarized Plane Wave Incidence (쌍적분 방정식을 이용한 완전도체쐐기의 점근해 유도, I : E-분극된 평면파 입사시)

  • 하헌태;나정웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.21-29
    • /
    • 1998
  • Dual integral equation in the spectral domain is derived for an arbitrary angled perfect conducting wedge with E-polarized plane wave incidence. Analytic integration of the dual integral equation in the spectral domain with the exact boundary fields of the perfect conducting wedge, the well known series solution, gives the exact asymptotic solution. The validity of the integration is assured by showing that analytic integration gives the null fields in the complementary region.

  • PDF

The Stress Distribution in a Long Circular Cylinder under a Discontinuous Boundary Conditions on the Curved Surface (곡면상에 불연속경계조건을 간는 원주의 응력분포)

  • Lee, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.2
    • /
    • pp.38-41
    • /
    • 1978
  • 이 논문에서는 표면의 일부에 기지의 압력을 밥는 긴 원주내의 응력분포를 구하는 문제를 고찰하였다. 문제를 혼합경계치조건에서 발생되는 쌍적분방정식의 해를 구하는 문제로 간단히 한후에 제 2종 Fredholm 적분방정식을 해결하는 문제로 하였다. 이 적분방정식의 수직해를 전자계산기에 의하여 구한 다음 도시하였다.

Analysis of dual integral equation formulated for EM waves scattered by wedges (쉐기형 산란체에 의해 산란된 전자파에 대한 쌍적분 방정식 해석)

  • Kim, Se-Yun;Na, Jeong-Ung;Sin, Sang-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.344-347
    • /
    • 1985
  • Hew dual integral equation for electromagnetic field scattered by an arbitrary dielectric wedge is formulated. In order to check the validity and physical meaning of the formulated equation, it is applied to the well-known case which is the diffraction by a perfectly conducting wedge.

  • PDF

Weakly Nonlinear and Dispersive Wave Equations for Random Waves (불규칙파를 위한 약비선형 약분산 파랑 방정식)

  • Jung, Jae-Sang;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.429-438
    • /
    • 2005
  • In this study, a couple of ordinary differential equations which can describe random waves are derived from the Boussinesq equations. Incident random waves are generated by using the TMA(TEXEL storm, MARSEN, ARSLOE) shallow-water spectrum. The governing equations are integrated with the 4-th order Runge-Kutta method. By using newly derived wave equations, nonlinear energy interaction of propagating waves in constant depth is studied. The characteristics of random waves propagate over a sinusoidally varying topography lying on a sloping beach are also investigated numerically. Transmission and reflection of random waves are considerably affected by nonlinearity.

Stress Intensity Factors for an Interlaminar Crack in Composites under Arbitrary Crack Surface Loadings (임의의 균열표면 하중을 받는 복합채 중앙균열의 응력세기계수)

  • Lee, Gang-Yong;Park, Mun-Bok;Kim, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.901-909
    • /
    • 1996
  • A model is constructed to evaluate the stress intensity factors(SIFs) for composites with an interlaminar crack subjected to as arbitrary crack surface loading. A mixed boundary value problem is formulated by Fourier integral transform method and a Fredholm integral equation of the second kind is derived. The integral equation is solved numerically and the mode I and II SIFs are evaluated for various shear modulus ratios between each layer, crack length to layer thickness, each term of crack surface polynomial loading and the number of layers. The mode I and II SIFs for the E- glass/epoxy composites as well as the hybrid composites are also evaluated.

Transient Response of Functionally Graded Piezoelectric Ceramic with Crack (균열이 있는 기능경사 압전 세라믹의 충격 특성에 관한 연구)

  • Jeong Woo Shin;Tae-Uk Kim;Sung Chan Kim
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.21-27
    • /
    • 2003
  • Using the theory of linear piezoelectricity, the dynamic response of a central crack in a functionally graded piezoelectric ceramic under anti-plane shear impact is analyzed. We assume that the properties of the functionally graded piezoelectric material vary continuously along the thickness. By using the Laplace and Fourier transform, the problem is reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. Numerical values on the dynamic stress intensity factors are presented to show the dependence of the gradient of material properties and electric loading.

Prediction of Wave Energy Absorption Efficiency and Wave Loads of a Three-Dimensional Bottom-Mounted OWC Wave Power Device (착저식 OWC 파력발전장치의 파에너지 흡수효율 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Key-Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • The wave energy absorption efficiency and the first-order and the time-mean second-order wave loads of a three-dimensional bottom-mounted oscillating water column (OWC) chamber structure are studied. The potential problem is solved by making use of a hybrid Green integral equation associated with the finite-waterdepth free-surface Green function outside a twin chamber and the Rankine Green function inside taking account of the fluctuating air pressure inside the chamber. Numerical results of the primary wave energy converting efficiency and the oscillating and steady wave loads of a three-dimensional bottom-mounted OWC pilot plant have been presented.