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The Stress Distribution in a Long Circular Cylinder
under a Discontinuous Boundary Conditions
on the Curved Surface

Doo-Sung Lee*
(Received Sept. 21, 1978)
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1. Introduction.

Mixed boundary value problems concerning with
long circular cylindrical geometry have been investi-
gated by Srivastav and Lee [6] and others [1,2,4]
and much of them discuss the cases when the axisy
mmetric boundary conditions of mixed type are pres-
cribed on the plane which is perpendicular to the
curved surface of the cylinder. However,Tranter and
Craggs [5] have discussed the problem involving long
circular cylinder when a discontinuous pressure is
applied to the curved surface. Number of years ago,
Vaughan and Allwood [7] obtained dual series equat
ions in course of studying the constriction of an ela
stic cylinder under an axial compression, and they
solved it approximately.

In this paper, the problem of determining the str-
ess distribution in a long circular cylinder, when the
mixed boundary conditions are given on the curved

surface of it, is considered.
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We take the axis of a half infinitely long circular
cylinder to be z-axis. We employ cylindrical polar
coordinates' (p, 8, z), and take for convenience the
radius of cylinder to be our unit of length. We
employ Love’s notation throughout this note.

When the radial component of the displacement
vector vanishes on the portion of the surface 0<z<e,
and the rest of the surface is subject to a known
pressure, our problem of determing the stress distrib-
ution in a long circular cylinder is equivalent to that
of solving biharmonic equation when the curved sur-

face p=1 is subjected to the conditions

0oa=0, 0sz<oo 1.1
u,=0, 0=2<a (1.2)
Gop=—211f(2), asz<{oo (1.3)

where p is the rigidity modulus. The fact that the
plane boundary z=0 is stress-free implies that on
the surface z=0, we have
Gp2=0, (1.4)
02:=0, (1.5)

II. Derivation of the Fredholm Integral
Equation of the Second Kind.
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It is well-known(cf.[5]) that the displacement and
stress components in the axially symmetric case is

given by the following equations
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where X(p, 2z) is an axisymmetric function and 7 is
Poisson’s ratio.
A suitable type of biharmonic function for a prob-
lem of this type is defined by the equation
o (" L) | 20—y
r=2u{ B® [- { TE+— = | L)
+p11<$p>] cosézdé —Zp’?;;li.'aF,.(ng—l

+2xz) e 42 Sy (Anp) 2.2)
where 1a is the root of the equation Ji(2s)=0. A
solution of this form automatidally satisfies equations
(1.1) and (1.5). The corresponding expressions for
oo and u, on the curved surface p=1 are given by
the equations

ow=—2,  BOLOF] §(FG ~1)-2FL]

sinEzde—Zpi,lF.Jo(k.) (2— 2n2) e~ ho®

ur=—2(1—7) | BO N esingzde

Thus it follows that the boundary conditions (1.2)
and (1.3) are satisfied if B(§) and F, satisfy the
dual integral equations

[ B@n@e] o B —1)-24F2]

sinézdé+ i:ZlE.Jo(x,.) (=2t =f(z),

a<z oo 2.3)
s : B(&)I,(8)&sinézde=0, 0=<2<a (2.4)

It is known [3, Vol. 1] that the equation(2.4) is au
tomatically satisfied if B(&) is written in terms of an

unknown function g(¢) through the equation

BO=—ler | e @5)

We decompose the equation (2.3) in the following
way

["B@L@e1—k@©)singrdt

+;;V‘:1F,.Jo(z..) (2= a2t =f(2), a<zloo (2.6)

where,

2 —
ko= [1-(FEF )+ 2]
Thus, if we substitute the value of B(8) from the
equation (2.5) into the equation (2.6), we obtain
following Abel type integral equation
8 (r_1gnd
0z Ji2 Ji2—22
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If we invert this Abel type integral equation, making
use of the known relations [3, Vol. I]

~  sinfzdz
S, Ji— =%Jo($t).

- zehidy
S‘ Jo—g - =Ko(at),
and
- ze~hidy
§ =G

we obtain the following Fredholm integral equation
of the second kind

g®— [ " ugw) [ k@ Ioew) Joleu)dedu

+%i Fado(1a) Ko(aat) =22 Ky (1)) = P (8

=1
@2.7
where

2 r~_ f(x)dx
7 ) V22

Complete solution is obtained by satisfying the

Pt)=

boundary condition (1.5). It can be easily shown
that o,. on the surface 2=0 is given by the equation

su=2u [ SBEO [~ 10 L(e)+ol )| 4

—zy;F,Jl(z.m
From the condition (1.5), we get

b2 RACOES IO ERGRSACS

+plo(ep) |
From the Fourier-Bessel series,we obtain the equation
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%FnJoz(lﬂ) = j:B(E)éa [%E—g—

[ Loneo) Tiomdo— | (o1o(ep) Titanp)dp ] ds

(2.8)
If we denote
IS W ACHIACHOEA
it can be easily shown that [8]
H(& D= 5 o DI (2.9)
and
1 1 @ _
jo Plo(@p) i (3p)dp=" g~ g SHE D=
Jo(4 2
—2 ezféxg {10(5)‘}"2_'*_-)_2—11(5)] (2.10)

Putting the equations (2.9) and (2.10) into the equ-

ation (2.8), we obtain, after simplification

Substitution of the value of B(§) from the equation
(2.5) into the equation (2.11) yields

(2.11)

Fudo(D) =42 j Tt (OF(, Dde

where
oo 3J t
FG, 0= S 0'%5&%5))7&
Further

Fle, )=¥(t, )+ ; ﬁ!{%ﬁ

where

= LJo(L)
ven={, e

We find that, from [4, Vol. 2]
¥t 2)=Ko(2t)

Hence, we have

ag

F( D=4 (Ko(a) ~ - KO0}
and, thus,
FudoOn) =42 | g (0 ulKoln) — 255Ky ()

Upon inserting the above expression into the equa
tion (2.7), we finally obtain following Fredholm in

tegral equation of the second kind.
£ | @K@ Hdu=P®) 2.12)
where

K o=u | | 6@ Joen)o(ede

— 28 S Gy () |
T n=l
with

h(2at) = Ko(ant) —

Aat
2 Ky (an)

III. Numerical Solution of the Integral
Equation.

In this section numerical solution of the integral

equation (2.12) is considered w‘hen f(z)=—i—. Thus

the governing integral equation is

1

s~ | g K@ Ddu= 1

The integral equation was reduced to the set of
simultaneous linear equations by replacing the integ-
ral by finite sum using 7-point Laguerre quadrature.
The integral occuring in the kernel was also calcu-
lated by using the same quadrature formula. To sec-
ure the convergence of the later integral we have
used asymtotic expansion
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The result of the calculations of g(¢) is shown
graphically in Fig. 1 for =2 and 7=0.3.
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