• Title/Summary/Keyword: 쌍극자-쌍극자 탐사

Search Result 102, Processing Time 0.022 seconds

Analyses of Dipole-Dipole IP Responses over Dipping Structures (경사구조에 대한 쌍극자 IP 응답의 해석)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.17 no.1
    • /
    • pp.49-55
    • /
    • 1984
  • This paper describes three-dimensional (3-D) standard curves for conductive dipping buried bodies in induced polarization (IP) method. Dipole-dipole IP responses for the dipping bodies are calculated by the numerical modeling technique using an integral equation solution. Dip angles of the bodies are 0, 20, 45, 70 and 90 degrees, respectively. The horizontal (0-degree dip) and vertical (90-degree dip) bodies produce symmetrical patterns of IP responses. The dipping bodies of 20, 45 and 70 degrees, however, produce asymmertical patterns, with the highest IP contours dipping in the direction opposite to the bodies in pseudo-sections. The most remarkable asymmetrical pattern appears in the model of 20-degree dip. It is difficult to distinguish the body of 70-degree dip from that of 90-degree dip on the basis of dipole-dipole IP data. The IP pattern in pseudo-sections varies when the line moves away from the center of the body along strike, with the anomaly deeper and smaller in amplitude. IP maps seem to be more useful than IP pseudo-sections in predicting the location of target.

  • PDF

Magnetic Field Inversion and Intra-Inversion Filtering using Edge-Adaptive, Gapped Gradient-Nulling Filters: Applications to Surveys for Unexploded Ordnance (UXO)

  • Rene, R.M.;Kim, K.Y.;Park, C.H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • Estimations of depth, magnetic orientation, and strength of dipole moments aid discrimination between unexploded ordnance (UXO) and non-UXO using magnetic surveys. Such estimations may be hindered by geologic noise, magnetic clutter, and overlapping tails of nearby dipole fields. An improved method of inversion for anomalies of single or multiple dipoles with arbitrary polarization was developed to include intra-inversion filtering and estimation of background field gradients. Data interpolated to grids are flagged so that only nodes nearest to measurement stations are used. To apply intra-inversion filtering to such data requires a gapped filter. Moreover, for data with significant gaps in coverage, or along the edges or corners of survey areas, intra-inversion filters must be appropriately modified. To that end, edge-adaptive and gapped gradient-nulling filters have been designed and tested. Applications are shown for magnetic field data from Chongcho Lake, Sokcho, Korea and the U. S. Army's Aberdeen Proving Ground in Maryland.

  • PDF

A Study on Application of Electrical Resistivity Survey to Detect the Leakage of Embankment with Weak Zone (취약대가 존재하는 제방의 누수 탐지를 위한 전기비저항 탐사의 적용성 연구)

  • Park, Samgyu;Kim, Jaehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.5-13
    • /
    • 2013
  • The water leakage of reservoir embankment usually occurs around channelling pipes, which gives little influence on the embankment in a normal state. However, the embankment can be destroyed when the water level of reservoir increases with heavy rain and the rainy season in summer. Investigating the water vein and its path is therefore very important from the viewpoint of disaster prevention and embankment maintenance. The water leakage in dams and levees where the channelling pipes are working as weak zone was analyzed by using both numerical simulation and experimental method in this study. To detect the water leakage, an electrical resistivity survey was used and investigated for its' usability. The numerical results show the size and location of weak zone increases the importance of selection of electrode spacing. The leakage experiments of model embankment present the best result is obtained under the conditions of electrode spacing of 0.3m and dipole-dipole array. By studying the water leakage in dams and levees, the electrical resistivity survey is observed it is a very useful method to predict the leakage.

낙동강변 충적층 시추자료와 지구물리탐사자료의 연관성

  • Ham, Se-Yeong;Hwang, Hak-Su;Kim, Hyeong-Su;Jeong, Jae-Yeol;Moon, Chang-Gyu;Cha, Yong-Hun;Jang, Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.552-556
    • /
    • 2003
  • 창원시 대산면 갈전리의 강변여과수 취수지역의 8개의 시추공의 시추지료로부터 파악된 지하지질과 물리탐사자료를 비교하여 둘 간의 연관성을 검토하였다. 본 연구에서는 이미 얻어진 시추공 자료와 비교ㆍ검토하기 위하여 지구물리탐사를 실시하였다. 수행된 지구물리탐사는 쌍극자배열 전기비저항 수평탐사, 슐럼버져법배열 전기비저항 수직탐사, 지하투과레이다탐사이다. 전기비저항 수평탐사에 의하면 저비저항치의 두께는 낙동강변에 가까울수록 두꺼워지는 경향성을 보이고 있다. 전기비저항 수직탐사 결과는 시추자료와 비교적 잘 일치하고 있으며 지표로부터 세립질 모래층, 중립질 모래층, 세립질 모래층의 구분이 수직탐사 결과에서 잘 나타나고 있다. 또한 GPR탐사와 전기비저항 수직탐사 결과에 의하면, 지하수면은 6m 부근에 위치하고 있음을 알 수 있다.

  • PDF

Resistivity Tomography in an Inclined Borehole to Surface Purvey Using a Pole-dipole Array (단극-쌍극자 배열을 이용한 경사시추공-지표 탐사에서 전기비저항 토모그래피)

  • Park Jong-Oh;Kim Hee-Joon;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.255-263
    • /
    • 2006
  • In an electrical tomographic survey using an inclined borehole with a pole-dipole array, we must consider several factors: a singular point associated with zero potential difference, a spatial discrepancy between electrode and nodal point in a model due to a inclined borehole, and a variation of geometric factors in connection with a irregular topography. Singular points which are represented by the normal distance from current source to the ground surface can be represented by serveral regions due to a irregular topography of ground surface. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Test on a three-dimensional (3-D) synthetic model produces good images of conductive target and shoves stable convergence.

Electrical resistivity and seismic reflection mapping for the southeastern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 남동부의 전기비저항 및 탄성파탐사자료 해석)

  • Kim, Ji-Su;Han, Su-Hyeong;Lee, Cheol-U;Kim, Bok-Cheol;Yang, U-Heon;Son, Ho-Ung;Son, Yeong-Gwan
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.77-90
    • /
    • 2000
  • Five electrical resistivity dipole-dipole and two seismic reflection surveys were performed in the southeastern margin of the Yongdong basin to delineate the shallow basin architecture. To investigate the intra-basin structure, twenty four resistivity sounding points and three dipole-dipole lines were selected especially in the vicinity of volcanic masses. The basin-fault boundaries are identified in electrical dipole-dipole resistivity section as high resistivity-contrast of approximately $1,500\;{\Omega}{\cdot}m$, characterized as a band of high standard-deviation. They are also effectively clarified in the seismic reflection data: amplitude and continuity contrasts in the common shot gather, first-arrival profiles, complex attribute plots. The intra-basin resistivity structures are constructed by interpolating vertical electrical sounding data and dipole-dipole profiles. The high-resistivity anomalies most likely originate from the northsouth-trending and northeast-dipping volcanic masses, which are to be further quantitatively investigated with geomagnetic and magnetotelluric surveys.

  • PDF

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

Reduction of magnetic anomaly observations from helicopter surveys at varying elevations (고도가 변화하는 헬리콥터 탐사에서 얻어지는 자력이상의 변환)

  • Nakatsuka, Tadashi;Okuma, Shigeo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Magnetic survey flights by helicopters are usually parallel to the topographic surface, with a nominal clearance, but especially in high-resolution surveys the altitudes at which observations are made may be too variable to be regarded as a smooth surface. We have developed a reduction procedure for such data using the method of equivalent sources, where surrounding sources are included to control edge effects, and data from points distributed randomly in three dimensions are directly modelled. Although the problem is generally underdetermined, the method of conjugate gradients can be used to find a minimum-norm solution. There is freedom to select the harmonic function that relates the magnetic anomaly with the source. When the upward continuation function operator is selected, the equivalent source is the magnetic anomaly itself. If we select as source a distribution of magnetic dipoles in the direction of the ambient magnetic field, we can easily derive reduction-to-pole anomalies by rotating the direction of the magnetic dipoles to vertical.

Investigations of Faults using array CSAMT Method (단층조사를 위한 array CSAMT 적용사례)

  • Lee Sang Kyu;Hwang Se Ho;Lee Dong Young;Lee Jin-Soo;Hwang Hak Soo;Park In Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.92-100
    • /
    • 1998
  • Array CSAMT surveys were conducted in two areas where it was not easy to identify the presence of faults only with geological survey because of thick overburden. The purpose of these surveys were to locate the faults and to delineate the deep resistivity structures around the faults. The steep dip lineaments having high contrast in resistivity laterally and the low resistive zones having some width in the resistivity sections were interpreted as faults and fracture zones associated with faults, respectively, The good applicability of array CSAMT to the investigation of fault was recognized owing to the agreement between the interpretation results of array CSAMT and the conclusive evidences collected by the following geological survey. The evidences includes the recent exposure of fault and the trajectory of fault evidences of the survey line. A comparison of the applicabilities of array CSAMT method and the resistivity method using dipole-dipole array was presented with the results of both methods along a same traverse line.

  • PDF

Shallow Subsurface Structure of the Yaksoo Area, Ulsan, Korea by Geophysical Surveys (물리탐사기법에 의한 울산광역시 약수지역 천부지하구조 조사)

  • Lee, Jung-Mo;Kong, Young-Sae;Chang, Tae-Woo;Park, Dong-Hee;Kim, Tae-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The location and geometry of the Ulsan Fault play important roles in interpreting tectonic evolution of the southeastern part of the Korean Peninsula. Dipole-dipole electrical resistivity surveys and seismic refraction surveys were carried out in the Yaksoo area, Ulsan in order to measure the thickness of the alluvium covering the Ulsan Fault and to find associated fracture zones and possibly the location of its major fault plane. The collected data were analyzed and interpreted. Some results reported previously by others were also used in this interpretation. No low resistivity anomalies were found in the cross-sectional resistivity image of the survey line located in the east of the Dong River. In contrast, well-developed continuous low resistivity anomalies were detected in the west of the Dong River. This strongly suggests that the major fault plane of the Ulsan Fault is located under or in the west part of the Dong River. Two refraction boundaries corresponding to the underground water level and the bottom of the alluvium were found by refraction surveys carried out on the limited part of the east survey line. The thickness of the alluvium was found to be about 30 m. Small faults in the basement rock identified by reflection surveys were not detected by both resistivity and refraction seismic surveys. This might be explained by assuming that low resistivity anomaly is more closely related to the clay contents than the water contents. On the other hand, it may be resulted by the limited resolution of the resistivity and refraction surveys. Detailed study is required to clarify the reason. Resistivity survey is frequently considered to be a good exploration method to detect subsurface faults. However, it appears to be less useful than reflection seismic survey in this work. In dipole-dipole resistivity survey, the number of separation should be increased to survey deeper subsurface with the same resolution. However, signal to noise ratio decreases as the number of separation increases. In this survey area, the signal to noise ratio of up to sixteen separations was good enough based on the statistical properties of measurements.

  • PDF