• Title/Summary/Keyword: 쌍극자모멘트

Search Result 57, Processing Time 0.025 seconds

Complex Permittivity of Sand at Low Frequency (저주파수 영역에서 측정된 사질토의 유전특성)

  • Oh Myoung Hak;Kim Yong Sung;Park Jun Boum;Yoon Hyun Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.93-103
    • /
    • 2005
  • This study was performed to identify the presence of measurement distortions such as electrode polarization and to investigate the influence of soil water content on complex permittivity at low frequency. In low frequency measurement using two-terminal electrode system, electrode polarization effect was observed at frequencies less than approximately 100 HBz. The analysis for real permittivity should be performed at frequencies above 100 kHz in order to exclude electrode polarization effect in the analysis of real permittivity at low frequency measurements. For a given soil, both of real and effective imaginary permittivity of wet soil increased continuously with volumetric water content. This is evidenced by the facts that the real permittivity is proportional to the number of dipole moments per unit volume and effective imaginary permittivity is effected by the conduction due to water. However, proportional relation between real permittivity and volumetric water content is valid at upper MHz frequencies.

Basic theory of Dielectric Relaxation Spectroscopy and Studies of Electrolyte Structure (유전체 이완 분광법의 원리 및 이를 이용한 전해액 미시구조 연구)

  • Koo, Bonhyeop;Hwang, Sunwook;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2019
  • To examine the solution structure of electrolytes, it is very important to understand ion-ion and ion-solvent interactions. In this review, we introduce the basic principle of dielectric relaxation spectroscopy (DRS) and studies of electrolyte structure. DRS is a type of impedance method, which measures the dielectric properties of electrolytes over a high frequency domain at levels of tens of GHz. Therefore, DRS provides information on the different polar chemical species present in the electrolyte, including the type and concentration of free solvents and ion pairs with dipole moments. The information of DRS is complementary to the information of conventional analytical techniques (Infrared/Raman spectroscopy, nuclear magnetic resonance (NMR), etc.) and thus enables a broad understanding of electrolyte structure.

Analysis of a CubeSat Magnetic Cleanliness for the Space Science Mission (우주과학임무를 위한 큐브위성 자기장 청결도 분석)

  • Jo, Hye Jeong;Jin, Ho;Park, Hyeonhu;Kim, Khan-Hyuk;Jang, Yunho;Jo, Woohyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • CubeSat is a satellite platform that is widely used not only for earth observation but also for space exploration. CubeSat is also used in magnetic field investigation missions to observe space physics phenomena with various shape configurations of magnetometer instrument unit. In case of magnetic field measurement, the magnetometer instrument should be far away from the satellite body to minimize the magnetic disturbances from satellites. But the accommodation setting of the magnetometer instrument is limited due to the volume constraint of small satellites like a CubeSat. In this paper, we investigated that the magnetic field interference generated by the cube satellite was analyzed how much it can affect the reliability of magnetic field measurement. For this analysis, we used a reaction wheel and Torque rods which have relatively high-power consumption as major noise sources. The magnetic dipole moment of these parts was derived by the data sheet of the manufacturer. We have been confirmed that the effect of the residual moment of the magnetic torque located in the middle of the 3U cube satellite can reach 36,000 nT from the outermost end of the body of the CubeSat in a space without an external magnetic field. In the case of accurate magnetic field measurements of less than 1 nT, we found that the magnetometer should be at least 0.6 m away from the CubeSat body. We expect that this analysis method will be an important role of a magnetic cleanliness analysis when designing a CubeSat to carry out a magnetic field measurement.

A Study on a Teacher's and Students' Perceptions of Learning Difficulties of the Chemical Bond Unit of the Chemistry II (화학II 화학결합 단원의 학습 어려움에 대한 학생과 교사의 인식 연구)

  • Ko, Ki-Hwan;Lee, Sun-Kyung;Kang, Kyung-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.5
    • /
    • pp.447-458
    • /
    • 2007
  • The purpose of this study was to explore high school teacher's and students' perceptions of learning difficulties of the ‘chemical bond' unit of the Chemistry II in the 7th national curriculum. The participants in this study were consisted of a teacher and his students(85) from the Chemistry II classrooms: they all answered to the questionnaire, and then some students and the teacher were interviewed individually. The results showed that there were big differences between the teacher's and his students' perceptions of 1) the most difficult unit for understanding; 2) concepts they learned; and 3) the most difficult concept for understanding in the classroom. Students thought that electro-negativity unit was the most difficult to understand while teacher thought molecular structure unit was the hardest unit to teach. And teacher taught all 32 subjects of chemical bond unit to students, but some students could not remember they learned all of them. Most difficult parts for students to understand were ‘Coulomb force' and ‘dipole moment', while the most difficult part for the teacher to teach was ‘the conceptual difference between atomic bond and intermolecular force'. The reasons caused the students' learning difficulties were analyzed and discussed based on the interview data, and then further study was presented.

Solvation in Mixed Solvent (III). Solvatochromic Analysis for the Solvent Effect of Binary Mixed Solvent (혼합용매에서의 용매화 (제3보). 이성분 혼합용매 중에서 용매효과에 대한 분광용매화 분석)

  • Lee, Ik-Choon;La, Sang-Mu;Lee, Bon-Su;Sohn, Se-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.210-216
    • /
    • 1984
  • Solvatochromic comparison methods were applied to determine Taft's solvent parameters, ${\pi}^{\ast}$(solvent polarity-polarizability), ${\alpha}$(solvent hydrogen bond donor acidity) and ${\beta}$ (solvent hydrogen bond acceptor basicity) for MeOH-MeCN solvent mixtures. Swain's solvent parameters A(anion solvation scale) and B(cation solvation scale) were also determined by least square fitting of kinetic data in the same binary solvent mixtures. It was found that: (i)${\beta}$ depends on the basicity of the solvent and increases with the MeOH content owing to the increase in polymeric structure of methanol; (ii) ${\pi}^{\ast}$depends on the dipole moment of the solvent and increases with the MeCN content of the solvent; (iii) ${\alpha}$ increases rapidly with the MeOH content as the hydrogen bond donor acidity of the solvent mixtures increases. Taft's reaction constants a and s and Swain's reaction constants a and b were determined for the reactions reported from our laboratory previously using solvent parameters determined in this work. No meaningful inter-relationship was found between the two set of reaction parameters, but a good linear correlation was found between the ratios a/s and a/b. Solvent effect on the reaction mechanism, substituent effect and leaving group ability were examined in the light of these reaction constants ratios.

  • PDF

Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules (활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성)

  • Song, Eun Ji;Kim, Min-Ji;Han, Jeong-In;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, oxygen functional groups were introduced on activated carbon fibers (ACFs) by oxygen plasma treatment to improve the adsorption performance on an acetic acid which is a sick house syndrome induced gas. The active species was generated more as the flow rate of the oxygen gas increased during the plasma treatment. For this reason, the specific surface area (SSA) of the ACFs decreased with much more physical and chemical etching. In particular, the SSA of the sample (A-O60) injected with an oxygen gas flow rate of 60 sccm was reduced to about $1.198m^2/g$, which was about 6.95% lower than that of the untreated samples. On the other hand, the oxygen content introduced into the surface of ACFs increased up to 35.87%. Also, the adsorption performance on the acetic acid gas of the oxygen plasma-treated ACFs was improved by up to 43% compared to that of using the untreated ACFs. It is attributed to the formation of the hydrogen bonding due to the dipole moments between acetic acid molecules and oxygen functional groups such as O=C-O introduced by the oxygen plasma treatment.

Determination of Reactivities by Molecular Orbital Theory (V). Sigma Molecular Orbital Treatment of $S_N$ Reactivities of Alkylchlorides. (화학반응성의 분자궤도론적 연구 (제5보). 염화알킬의 친핵성치환 반응성에 대한 시그마 분자궤도론적 연구)

  • Ikchoon Lee;Bon-Su Lee;Kwang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.95-104
    • /
    • 1973
  • Ground electronic structures and SNreactivities of a series of alkylchlorides (methyl,ethyl, iso-propyl, trans n-butyl, sec-butyl, tert-butylchloride) have been studied using approximate $({\sigma}-MO)$ method, such as EHT and CNDO/2. It was found that CNDO/2 gives better results for the systems such as alkylchlorides whose structural differences are not remarkable, in comparison with EHT method. According to CNDO/2 results, calculated dipole moments for alkylchlorides are slightly higher than observed values, showing the order of primary < secondary < tertiary alkylchlorides. It was also found that highest occupied(HO) MO's are completely or nearly degenerate, and show relatively weak $\pi$-antibonding nature between$\alpha$-carbon and Cl atoms. Furthermore, the electrons in this MO are largely confined to Cl atom, and hence these behaves as likely as p-lone pair electrons of Cl atom. On the contrary, lowest unoccupied (LU) MO's show strong $\sigma$-antibonding nature between $\alpha$-carbon and Cl atoms whose electron clouds are directed along the C-Cl axis. It has been discussed that the$S_N2$ reactivities of alkylchlorides may largely be controlled by ${\sigma}^{\ast}$ LUMO, and the antibonding strength between $\alpha$-carbon and Cl atoms in this MO may become the measure of $S_N2$reactivity. The relationship between $S_N2$reactivity and C-Cl bond polarizability has also been discussed. It has been suggested that the unique structure factors determining $S_N1$reactivities may be $\pi$-antibonding strength between $\alpha$-carbon and Cl atoms in HOMO and C-Cl bond strength in ground state.

  • PDF