• Title/Summary/Keyword: 쌍곡포물선쉘

Search Result 6, Processing Time 0.017 seconds

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells (모임지붕형 쌍곡포물선 쉘구조의 유한요소해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • In this study, mechanical role of edge beams in the gabled hyperbolic paraboloid shells was investigated through the comparisons of Finite element(FE) analysis results between the shells structures with and without edge beams. In addition, the effects of roof slope was studied. FE analysis showed that roof loads was directly transferred to the supports at corners by the arch action in the diagonal direction of the shells, thus, less member forces in the edge and ridge beams but higher stresses near supports were estimated than those from the membrane theory. When the edge beams were removed, stress concentration in the shells near the supports and the deflections along the shell edge were increased. Such phenomenon were intensified as the roof slope decrease. Thus, in gable hyperbolic paraboloid shell, the thickness of the shell near supports needs to be increased and careful investigation should be made in the cases when the roof height is low and/or the edge beams are removed.

Finite Element Analysis of Inverted Umbrella-type Hyperbolic Paraboloid Shell (역우산형 쌍곡포물선 쉘의 유한요소해석)

  • Kwon, Hung-Joo;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.87-95
    • /
    • 2011
  • This study presents the comparisons between the analysis results based on membrane theory and finite element analysis for the inverted umbrella-type hyperbolic paraboloid shell structure. The effects of the roof angle on the roof deflections, member forces of edge beams and ribs, and shell stress are also investigated with various roof angles. Results show that the membrane theory overestimates the member forces of edge beams and ribs. On the contrary, the shell stresses are underestimated in the membrane theory when compared to the results from the finite element analysis. The deflections of roof slabs by finite element analysis show drastic increasement as the roof angle decreases.

Investigation on R/C Hyperbolic Paraboloid (HP) Saddle Shell Ultimate Behavior (R/C 쌍곡 포물선 '안장' 쉘의 극한 거동 연구(研究))

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 1993
  • Nonlinear inelastic behavior of an HP saddle shell has been examined by a finite element computer program developed on a Cray Y-MP. The mesh convergence is studied using three progressively refined finite element mesh models, $16{\times}16$, $32{\times}32$ and $64{\times}64$, for the elastic and inelastic analyses. It is shown that the $32{\times}32$ mesh model gives a solution that is very close to that given by the $64{\times}64$ mesh model, thus, showing a convergence. The inelastic analysis shows that the shell has a tremendous capacity to redistribute the stresses. At the ultimate, the concrete cracks and the reinforcement yieldings are spread out all over the shell, indicating that the stress distribution in the shell is approaching that given by the classical membrane theory. The present computer program provides a very useful tool for evaluating the nonlinear ultimate behavior of concrete shells during the design process.

  • PDF

Design versus Ultimate Behavior of Reinforced Concrete Hyperbolic Paraboloid Saddle Shell (철근콘크리트 쌍곡 '안장' 쉘의 설계 예와 극한거동)

  • Min, Chang Shik;Gupta, Ajaya K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.807-814
    • /
    • 1994
  • One case of pointwise limit design is performed for a hyperbolic paraboloid saddle shell(originally used by the Lin-Scordelis) to check the design strength against a consistent design loads, therefore, to verify the adequacy of current design practice for reinforced concrete shells. The design method which was based on stresses from membrane analysis in conjunction with pointwise limit state design equations shows a good performance, which means that the design method gives a lower bound on the ultimate load. This shows the adequacy of the current practice at least for this saddle shell case studied. To generalize the conclusion many more designs-analyses are performed with different shell configurations.

  • PDF

Finite Element Analysis of Gabled Hyperbolic Paraboloid Shells Subjected to Support Movements (지점변형을 하는 모임지붕형 쌍곡포물선쉘의 유한요소 해석)

  • Kim, Seung-Nam;Yu, Eun-Jong;Rha, Chang-Soon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.57-69
    • /
    • 2012
  • This study investigated the behaviors of the gabled hyperbolic paraboloid shell structure subjected to differential settlement and the horizontal displacement due to the elongation of tie rod/beam on supports. Two types of shell structure with different roof slopes are used in study; conventional type which has perimeter beams around the shell panel, and simple type which removes the edge beams along the slab edge line. The effect of the removal of edge beam under vertical or horizontal displacement on supports, and the roof slope was compared using the finite element analysis.

Behavior of RC Gabled Hyperbolic Paraboloid Shell (RC 쌍곡포물선 내림마루형식 지붕 쉘의 거동)

  • 민창식;이재석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.207-214
    • /
    • 1995
  • Muller-Scordelis RC Gabled Hyperbolic Paraboloid (HP) shell is divided by 40 40 mesh and analyzed using a finite element computer program which was developed by Mahamoud and Gupta and migrated to a Cray Y-U 00 at SERI. The results are compared with membrane theory and Muller-Scordelis's results. Comparing with Muller-Scordelis's result it shows that good agreements between two analyses, except a discrepancy in the normal deflections of the crown beam. The behavior of the crown beam is quite sensitive and needs further study. The analysis shows that Gabled HP shells do not behave as the typical shells according to the membrane theory. To design such Gabled HP shells we rather use a finite element analysis which simulates realistically membrane and honing actions of the shells.

  • PDF