• Title/Summary/Keyword: 심화 학습

Search Result 393, Processing Time 0.028 seconds

The Effectiveness of Purdue GERI Program on Science Learning and Creativity Development of Korean Gifted Students (미국 퍼듀대학 하계 GERI (Gifted Education Resource Institute) 프로그램에 참가한 한국 영재 학생들의 과학 학습과 창의성 개발에 대한 효과 분석)

  • Chae, Dong-Hyun;Kwon, Kyong-Ah;Son, Yeon-A
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.296-306
    • /
    • 2006
  • The purpose of this study is to examine the effectiveness of the summer enrichment programs on Korean gifted students' science learning and creativity development. This program is organized by Purdue University Gilled Education Resource Institute (GERI) in U.S.A. Researchers conducted semi-structured interview with 6 Korean students and observed 12 Korean students and GERI teachers for teacher-student interaction and teaching strategies during science-related classes. From the results, GERI program developed from Purdue 3 stage enrichment model that emphasizes creative teaching strategies, group discussions, and individual research were effective to foster creative thinking of Korean gilled students. Despite their language barriers, Korean gilled students found GERI program experience fun, creative, easy, relaxing, and thereby satisfying for their psychological and academic needs. They expected the level of stimulation in GERI program to be higher and the class to be organized more systematically; however, they reported that the broad range of topics and diverse content of GERI classes helped them develop creativity more than Korean classes. These findings will make contribution to the improvement of the quality of gifted education curriculum and programming in Korea.

  • PDF

Development and Application of Convergence Education about Support Vector Machine for Elementary Learners (초등 학습자를 위한 서포트 벡터 머신 융합 교육 프로그램의 개발과 적용)

  • Yuri Hwang;Namje Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.95-103
    • /
    • 2023
  • This paper proposes an artificial intelligence convergence education program for teaching the main concept and principle of Support Vector Machines(SVM) at elementary schools. The developed program, based on Jeju's natural environment theme, explains the decision boundary and margin of SVM by vertical and parallel from 4th grade mathematics curriculum. As a result of applying the developed program to 3rd and 5th graders, most students intuitively inferred the location of the decision boundary. The overall performance accuracy and rate of reasonable inference of 5th graders were higher. However, in the self-evaluation of understanding, the average value was higher in the 3rd grade, contrary to the actual understanding. This was due to the fact that junior learners had a greater tendency to feel satisfaction and achievement. On the other hand, senior learners presented more meaningful post-class questions based on their motivation for further exploration. We would like to find effective ways for artificial intelligence convergence education for elementary school students.

A Study of a Teaching Plan for Gifted Students in Elementary School Mathematics Classes (일반학급에서의 초등 수학 영재아 지도 방안 연구)

  • Kim, Myeong-Ja;Shin, Hang-Kyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.163-192
    • /
    • 2009
  • Currently, our country operates gifted education only as a special curriculum, which results in many problems, e.g., there are few beneficiaries of gifted education, considerable time and effort are required to gifted students, and gifted students' educational needs are ignored during the operation of regular curriculum. In order to solve these problems, the present study formulates the following research questions, finding it advisable to conduct gifted education in elementary regular classrooms within the scope of the regular curriculum. A. To devise a teaching plan for the gifted students on mathematics in the elementary school regular classroom. B. To develop a learning program for the gifted students in the elementary school regular classroom. C. To apply an in-depth learning program to gifted students in mathematics and analyze the effectiveness of the program. In order to answer these questions, a teaching plan was provided for the gifted students in mathematics using a differentiating instruction type. This type was developed by researching literature reviews. Primarily, those on characteristics of gifted students in mathematics and teaching-learning models for gifted education. In order to instruct the gifted students on mathematics in the regular classrooms, an in-depth learning program was developed. The gifted students were selected through teachers' recommendation and an advanced placement test. Furthermore, the effectiveness of the gifted education in mathematics and the possibility of the differentiating teaching type in the regular classrooms were determined. The analysis was applied through an in-depth learning program of selected gifted students in mathematics. To this end, an in-depth learning program developed in the present study was applied to 6 gifted students in mathematics in one first grade class of D Elementary School located in Nowon-gu, Seoul through a 10-period instruction. Thereafter, learning outputs, math diaries, teacher's checklist, interviews, video tape recordings the instruction were collected and analyzed. Based on instruction research and data analysis stated above, the following results were obtained. First, it was possible to implement the gifted education in mathematics using a differentiating instruction type in the regular classrooms, without incurring any significant difficulty to the teachers, the gifted students, and the non-gifted students. Specifically, this instruction was effective for the gifted students in mathematics. Since the gifted students have self-directed learning capability, the teacher can teach lessons to the gifted students individually or in a group, while teaching lessons to the non-gifted students. The teacher can take time to check the learning state of the gifted students and advise them, while the non-gifted students are solving their problems. Second, an in-depth learning program connected with the regular curriculum, was developed for the gifted students, and greatly effective to their development of mathematical thinking skills and creativity. The in-depth learning program held the interest of the gifted students and stimulated their mathematical thinking. It led to the creative learning results, and positively changed their attitude toward mathematics. Third, the gifted students with the most favorable results who took both teacher's recommendation and advanced placement test were more self-directed capable and task committed. They also showed favorable results of the in-depth learning program. Based on the foregoing study results, the conclusions are as follows: First, gifted education using a differentiating instruction type can be conducted for gifted students on mathematics in the elementary regular classrooms. This type of instruction conforms to the characteristics of the gifted students in mathematics and is greatly effective. Since the gifted students in mathematics have self-directed learning capabilities and task-commitment, their mathematical thinking skills and creativity were enhanced during individual exploration and learning through an in-depth learning program in a differentiating instruction. Second, when a differentiating instruction type is implemented, beneficiaries of gifted education will be enhanced. Gifted students and their parents' satisfaction with what their children are learning at school will increase. Teachers will have a better understanding of gifted education. Third, an in-depth learning program for gifted students on mathematics in the regular classrooms, should conform with an instructing and learning model for gifted education. This program should include various and creative contents by deepening the regular curriculum. Fourth, if an in-depth learning program is applied to the gifted students on mathematics in the regular classrooms, it can enhance their gifted abilities, change their attitude toward mathematics positively, and increase their creativity.

  • PDF

The Development and Its Applications of the Family Life Education Program & Teaching-Learning Materials for Building Family Strength (가족생활교육 프로그램 및 교육 자료의 개발과 적용 -‘건강한 가정 만들기’를 중심으로-)

  • Lee Soo-Hee
    • Journal of Korean Home Economics Education Association
    • /
    • v.17 no.1 s.35
    • /
    • pp.113-129
    • /
    • 2005
  • The purposes of this study are: (1) to develop a family life education program and teaching-learning materials for building family strength, (2) to apply its program & teaching-learning materials to classrooms on the area of 'human development and family relationship' in Home Economics Education in senior high schools, (3) to provide self-directed teaching-learning materials for senior high schools' teachers and 11th-12th grade students. This study was performed according to the following procedure : (1) The area of family life education in the 7th Home Economics Education Curriculum was analyzed. (2) The students' abilities needed to acquire skills for family life were analyzed. (3) A framework for life-span family life education developed by NCFR and Adult Roles and Responsibilities Resource Guide in Utah, U.S. were reviewed and analyzed. Five units of the family life education such as 1)acquiring abilities for self management. 2)acquiring abilities for communicating, ?building family strength, acquiring abilities for crisis management, ?preparing the wise parent's roles was reconstructed. (4) In order to improve the effect of the family life education, the teaching-learning materials including lesson plans, work sheets, materials for teacher. hand outs, ppt materials. cartoons, pictures etc. were developed. (5) The developed teaching-learning materials were applied in the senior high school's classes and were revised. Additionally. a CD-rom title was made.

  • PDF

Exploring Teaching and Learning Supporting Strategies based on Effect Recognition and Continuous Intention in College Flipped Learning (대학 플립드 러닝의 효과인식과 계속의향에 기초한 교수학습 지원전략 탐색)

  • Kang, Kyunghee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • The purpose of this study is to explore supporting strategies for teaching and learning based on students' effect recognition and continuous intention in college flipped learning. It was analyzed 426 data by multivariate analysis of variance (MANOVA) by examining student's effect recognition and continuous intention on 15 flipped learning classes of K-university in Chungnam. The characteristics of learners were male, senior students, students who knew flipped learning, students who did not have previous experience, and students who were learning video at anytime. As a teaching strategy, it was found that effect recognition and continuous intention were high in the supplementary deepening flipped learning class and natural science or engineering area. As a teaching and learning supporting strategies, First, the university should develop and operate flipped class learning strategy program for females and low-grade students. Second, it should support the development of good flipped learning design and operation model of instructor. Third, it should support the development of high quality online learning contents that students can learn from time to time. Fourth, it should support the strengthening of teaching competency to develop and operate flipped learning classes. This study can be used as basic data to support and spread the effective flipped learning classes of the university in the future.

Implementation of a Web-based Hybrid Engineering Experiment System for Enhancing Learning Efficiency (학습효율 향상을 위한 웹기반 하이브리드 공학실험시스템 구현)

  • Kim, Dong-Sik;Choi, Kwan-Sun;Lee, Sun-Heum
    • Journal of Engineering Education Research
    • /
    • v.10 no.3
    • /
    • pp.79-92
    • /
    • 2007
  • To enhance the excellence, effectiveness and economical efficiency in the learning process, we implement a hybrid educational system for engineering experiments where web-based virtual laboratory systems and distance education systems are properly integrated. In the first stage, we designed client/server distributed environment and developed web-based virtual laboratory systems for digital systems and electrical/electronic circuit experiments. The proposed virtual laboratory systems are composed of four important sessions and their management system: concept learning session, virtual experiment session, assessment session. With the aid of the management system every session is organically tied up together to achieve maximum learning efficiency. In the second stage, we have implemented efficient and cost-effective distant laboratory systems for practicing electric/electronic circuits, which can be used to eliminate the lack of reality occurred during virtual laboratory session. The use of simple and user-friendly design allows a large number of people to access our distant laboratory systems easily. Thus, self-guided advanced training is available even if a lot of expensive equipment will not be provided in the on-campus laboratories. The proposed virtual/distant laboratory systems can be used in stand-alone fashion, but to enhance learning efficiency we integrated them and developed a hybrid educational system for engineering experiments. Our hybrid education system provides the learners with interactive learning environment and a new approach for the delivery of engineering experiments.

A Study on the Development of Project Based Teaching$\cdot$Learning Materials for the Mathematically gifted (주제 탐구형 수학 영재 교수$\cdot$학습 자료 개발에 관한 연구)

  • Choi, Jong-Hyeon;Song, Sang-Hun
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.169-192
    • /
    • 2005
  • The purpose of this study is to provide the conformity for developing project-based teaching$\cdot$learning materials for the mathematically gifted students. And this study presents development procedural model in order to improve the effectiveness, analyze its practical usage and examine the verification of the developed materials. It made the following results regarding the development of project-based teaching$\cdot$learning materials for gifted children in mathematics. First, it is necessary to provide appropriate teaching$\cdot$learning model to develop the materials, and the materials should be restructured to be available to other level students. Second, it is suggested to develop a prototype in order to develop teaching$\cdot$learning materials for gifted children in mathematics, further the prototype needs to be restructured until it satisfies theoretical frame. Third, an introduction should be made before the activity to perform the projects effectively. Fourth, a teacher's guidance should introduce children's examples corresponding to the objectives of learning, the examples of topics examined by students, and teacher's manual and attention for teaching. This study has a point of presenting the detailed guidelines with regards to development of teaching$\cdot$learning materials for gifted students in mathematics. This study has a point of presenting the detailed guidees with regards to development of teaching$\cdot$learning materials for gifted students in mathematics.

  • PDF

Design and Implementation of a Systemic Learner-centered Teaching Method Model - Focusing on H University - (체계적인 학습자 중심의 교수법 모델 개발 및 구현 - H 대학을 중심으로 -)

  • Kim, Sun-Hee;Cho, Young-Sik;Kim, Bo-Young;Han, Yong-Su
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.5
    • /
    • pp.163-173
    • /
    • 2021
  • This study tried to develop and implement a class model that can apply the teaching method that can operate learner-centered classes in university education to the class operation of the entire university, not individuals. For the development of the instructional model, the final model was derived through analysis of prior research, expert review, derivation of instructional model and design principles, pilot operation, primary questionnaire analysis, model and design strategy revision, and secondary questionnaire analysis. Shift_N+1 class consists of 6 models, and each model was divided into 3 parts. It was a preliminary learning using video, a face-to-face class for question-and-answer and in-depth learning on the core content, and feedback and process evaluation for individual student. We have built our own computer system so that we can implement this every week. The teaching method model that can apply the learner-centered curriculum to all classes at the university was standardized. The Shift_N+1 teaching method seeks to maximize the learner-centered learning effect by reflecting the characteristics of the subject, and to improve the quality of education by identifying students' achievements by week.

Development of Digital and AI Teaching-learning Strategies Based on Computational Thinking for Enhancing Digital Literacy and AI Literacy of Elementary School Student (초등학생의 디지털·AI 리터러시 함양을 위한 컴퓨팅 사고력 기반 교수·학습 전략 개발)

  • Ji-Yeon Hong;Yungsik Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • The wave of a knowledge and information society led by AI, Big Data, and so on is having an all-round impact on our way of life. Therefore the Ministry of Education is in a hurry to strengthen Digital Literacy, including AI and SW Education, by improving the curriculum that can cultivate basic knowledge and capabilities to respond to changes in the future society. It can be seen that establishing a foundation for cultivating Digital Literacy through all subjects and improving basic and in-depth learning in new technology fields such as AI linked to the information curriculum is an essential part for future society. However, research on each content for cultivating Digital and AI literacy is relatively active, while research on teaching and learning strategies is insufficient. Therefore in this study, a CT-based Digital and AI teaching and learning strategy that can foster that was developed and Delphi expert verification was conducted, and the final teaching and learning strategy was completed after evaluating instructor usability and analyzing learner effectiveness.

The Case Study of SW Education for Slow Youth Learners (느린 학습자 청년 대상 소프트웨어교육 사례연구)

  • Ryoo Eunjin;Park juyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.127-131
    • /
    • 2024
  • SW education was conducted for slow youth learners. 6 learners participatd in 8 sessions of an introductory course using several plays and 3 learners who more interested in introductory course participated in deeper course using normal method. After education, we survey and interview from learners, instructors and heads of welfare organizations. Learners showed interest and participated in the fact that they were participating in SW education, which was widely talked about. Learners were found to be more satisfied with introductory course education using play such as board games, and although they initially appeared to participate in unfamiliar learning content with low efficacy, it was observed that their efficacy increased with repetition. Additionally, it was observed that young people with an IQ of 80 or higher had a higher level of interest or interest in SW education than those with an IQ of 80 or lower. we discussed that there were not many opportunities to directly use the SW education content for youth who are slow learners in work or real life. We suggest this should be a focus education on the use of digital media - online meeting apps, office SW etc.- to improve digital literacy for life and work and that research on this should continue.