• Title/Summary/Keyword: 심해저

Search Result 177, Processing Time 0.031 seconds

A Study on Pick-up Device of Beep Sea Manganese Nodules Collector (심해저 망간단괴 집광기의 채집장치에 관한 연구)

  • Hong, Sub;Sim, Jae-Yong;Lee, Tae-Hee;Choi, Jong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.891-895
    • /
    • 1996
  • Performance and efficiency of hybrid (hydraulic-mechanical) pick-up device of deep sea manganese nodules collector are very sensitive to altitude and altitude of pick-up head relative to undulating seafloor. For this reason, motion control of pick-up head relative to the changing deep sea topography and other disturbances is of particular importance in design of pick-up device. The concept of design axiom is applied to a pick-up device of hybrid type. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pick-up head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Design Evaluation of Pickup Device Collecting Deep-Sea-Manganese Nodules (심해저 망간단괴 집광기 채집장치의 설계평가)

  • Choi, Jong-Soo;Lee, Tae-Hee;Hong, Sub;Sim, Jae-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.68-74
    • /
    • 1998
  • Performance and efficiency of deep seabed collector is a primary factor for feasibility of commercial deep ocean mining. The efficiency of manganese nodules collector depends on vehicle mobility relative to undulating seafloor and is attributed pickup head to keep altitude and elevation of it against seafloor. For this reason, motion control of pickup head relative to the changing deep-sea topography and other disturbances is of particular importance in design of pickup device. The concept of design axiom is applied to a pickup device of hybrid type in order to evaluate the concept design. Kinematic analysis conducted in absolute Cartesian coordinates gives position, velocity, and acceleration of the hydraulic cylinders which enable the pickup head to keep the preset optimal distance from seafloor. Inverse dynamic analysis provides the driving forces of hydraulic cylinders and the reaction forces at each joint. Design sensitivity analysis is performed in order to investigate the effects of possible design variables on the change of the maximum strokes of hydraulic cylinders. The direct differentiation method is used to obtain the design sensitivity coefficients.

  • PDF

Basic Design of Subsea Manifold Suction Bucket (심해저 원유 생산용 매니폴드 기초 석션 버켓 기본 설계)

  • Woor, Sun-Hong;Lee, Kangsu;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.161-168
    • /
    • 2018
  • This paper presents the design procedure of the suction bucket used to support a subsea manifold. The soil-suction bucket interaction numerical analysis technique was verified by comparing the present results with a reference data. In order to simulate the soil-bucket interaction analyses of a subsea manifold structure, various material data such as undrained shear strength, elastic modulus, and poisson ratio of soft clay in Gulf of Mexico were collected from reference survey. We proposed vertical and horizontal design loads based on system weights and current-induced drag forces. Under the assumption that diameter of the suction bucket was 3.0 m considering real dimension of the subsea manifold frame structures, aspect ratio was decided to be 3.0 based on reference survey. The ultimate bearing load components were determined using tangent intersection method. It was proved that the two design load components were less than ultimate bearing loads.

Study on the Application of Decentralized Control Method for Simplified Model of Deep Seabed Mining System (심해저 채광시스템의 단순 모델에 대한 분산 제어 기법 적용성 연구)

  • YEU TAE-KYEONG;HONG SUP;KIM HYUNG-Woo;CHOI JONG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • The deep seabed mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The milling system is regarded as a large-scale system in which each subsystem is interconnected to other one. In order to control a large-scale system, a decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system is simplified modeled, where the lifting system and buffer is regarded as a spherical pendulum and tile flexible pipe is as a two-dimension linear spring. Based on the derived model, the system characteristics and the feasibility of decentralized control are analyzed.

  • PDF

An Experimental Study on Relationship of Tractive Force to Slip for Tracked Vehicle on Deep-sea Soft Sediment (심해저 연약지반용 무한궤도차량의 견인력-슬립 관계에 관한 실험적 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo;Won, Moon-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.75-80
    • /
    • 2007
  • Measuring the ground speed and the rotation speeds of tracks is an easy and realistic method to detect the track slips. It is very advantageous if the slips can be measured and applied to real time control of the vehicle. With a proper speed, the tractive force of a tracked vehicle may be calculated from the vehicle dynamics. For the control of tracked vehicle, the relationship between the slip and the tractive force is necessary. In this paper, a series of drawbar-pull tests, in which slips of two tracks are measured under the variational draw-bar weight, is executed to directly obtain the slip-tractive force relationship. For the purpose of the test, a tractive vehicle model was manufactured, and an artificial soil was simulated by using a bentonite-water mixture.

Basic Design of Deep Subsea Manifold Frame Structure for Oil Production (심해저 원유 생산용 매니폴드 프레임 구조 기본 설계)

  • Park, Se-Yung;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.207-216
    • /
    • 2015
  • Amanifold is one of the essential subsea oil and gas production components to simplify the subsea production layout. It collects the production fluid from a couple of wellheads, transfers it to onshore or offshore storage platforms, and even accommodates water and gas injection flowlines. This paper presents the basic design procedure for a manifold frame structure with novel structural verification using in-house unity check codes. Loads and load cases for the design of an SIL 3 class-manifold are established from a survey of relevant industrial codes. The basic design of the manifold frame is developed based on simple load considerations such as the self weights of the manifold frame and pipeline system. In-house software with Eurocode 3 embedded, called INHA-SOLVER, makes it possible to carry out code checks on the yield and buckling unities. This paper finally proves that the new design of the manifold frame structure is effective to resist a permanent and environment load, and the in-house code is also adaptively combined with the commercial finite element code Nastran.

A development of the dynamic positioning(DP) system and model testing for performance estimation on katamaran type unmanned surface vehicle(USV) at open sea (무인쌍동선의 실해역 DP 성능평가를 위한 시스템 및 모형시험 검증 기법 개발)

  • Hyung-Do Song;Seok-Kyu Cho;Nam-Sun Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.188-188
    • /
    • 2022
  • 선박의 운용 효율을 높일 수 있는 방법인 무인 운용체계는 근래에 많은 관심을 받고 연구되어 왔다. 특히 무인수상선과 무인수중체의(USV-AUV)의 복합 운용 분야는 그 동안 어려움이 있었던 심해저 탐사 및 특수 임무 활용에 용이하여 많은 연구가 수행되고 있다. 본 연구에서는 쌍동선 형태인 무인수상선이 모선이 되고 무인수중체가 결합하여 충전하고 다시 진수하여 원거리 및 심해저 조건에서 무인수중체가 운용 가능하도록 하는 시스템의 일부인 USV-AUV의 docking을 위한 DP 시스템을 개발하고 선박해양플랜트연구소 해양공학수조에서 모형시험을 통해 이를 검증하였다. 또한, 실제 제작된 무인쌍동선과 추진 시스템을 활용하여 모형시험을 통해 검증한 DP 알고리즘을 적용하여 화성 제부도 앞바다에서 실선 DP 테스트를 수행하였다. 실 해역에서의 DP 시스템 테스트는 정확한 환경 조건의 계측 및 구현이 어려워 모형시험과 같은 정량적인 평가는 어렵지만, 정성적으로 DP 시스템이 작동하는 것을 확인할 수 있었다.

  • PDF

Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204 (압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204)

  • Lee Young-Joo
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.165-176
    • /
    • 2005
  • Natural gas in deep sediment may occur in three phases based on the physical and chemical conditions. If the concentration of gas in pore water is less than the solubility, gas is dissolved. If the concentration of gas is greater than its solubility (water is saturated or supersaturated with gas), gas occurs as a fee gas below the gas hydrate stability Lone (GHSZ) and is present as solid hydrate within the GHSZ. The knowledge of gas concentration in deep sediment appears critical to determine the phase of natural gases and to understand the formation and distribution of gas hydrate. However, reliable data on gas concentration are usually available only from the upper section of marine sediment by the headspace gas technique, which is widely used for sampling of gases from the sediments. The headspace gas technique represents only a fraction of gases present in situ because sediments release most of the gases during recovery and sampling. The PCS (Pressure Core Sampler) is a downhole tool developed to recover a nominal $1{\cal}m$ long, $4.32{\cal}cm$ diameter core containing $1,465cm^3$ of sediment, pore water and gas at in situ pressure up to 68.9 MPa. During Leg 204, the PCS was deployed at 6 Sites. In situ methane gas concentration and distribution of gas hydrate was measured by using PCS tool. Characteristics of methane concentration and distribution is different from site to site. Distribution of gas hydrate in the study area is closely related to characteristics of in situ gas concentration measured by PCS.

Comparison of Vane-shear Strength Measured by Different Methods in Deep-sea Sediments from KODOS area, NE Equatorial Pacific (북동태평양 KODOS지역 심해 퇴적물의 베인 전단강도 측정 방법에 따른 결과 비교)

  • Chi, Sang-Bum;Jung, Hoi-Soo;Kim, Hyun-Sub;Moon, Jai-Woon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.390-399
    • /
    • 1999
  • Siliceous and calcareous deep-sea core sediments were collected by a multiple corer from the KODOS (Korea Deep Ocean Study) area, northeast equatorial Pacific, to compare vane shear strengths measured by two different apparatuses and in different places of on-board and on-land laboratories. The apparatuses were 1) a hand-held vane with four blades of $2.0{\times}2.0$ cm, and 2) a motorized shear vane system with four blades of $1.0{\times}0.88$ attached on a rotational viscometer. Depth profiles of shear strengths of core samples determined by the apparatuses do not show any consistent difference. Also, there is no consistent difference between shear strength values measured on-board and on-land laboratories after storing the core samples for three months in a cold room by a motorized shear vane system. However, there are considerable differences between depth profiles of shear strengths measured at four different points (holes) of a core sample. Moreover, significant differences among the profiles of different tube samples from a multiple corer within a sampling station were observed. Heterogeneity in physical properties of each depth and sediment column, possibly due to bioturbation and bottom current flows, is likely responsible for the differences in the geotechnical properties.

  • PDF

Development of Operating S/W and DBMS for Deep-sea Manganese Nodule Miner (심해저 망간단괴 집광기의 운영 소프트웨어 및 데이터베이스 관리시스템 개발)

  • Park, Soung-Jae;Yeu, Tae-Kyeong;Yoon, Suk-Min;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Kim, Sang-Bong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.229-236
    • /
    • 2008
  • The deep-sea miner is the tracked vehicle system which drives on the deep-seabed and gathers a manganese nodules. The miner is operated by remote control in real-time by the station of surface vessel. So operating S/W is a important part of miner remote operating. At present, the test miner has been designed and manufactured for near-shore sea-test. The test miner consists of mechanical parts, and electric-electronic parts. Because those parts should be controled and monitored remotely, operating S/W for control and monitoring is necessary by all means. In this paper, real-time operating S/W for a control and monitoring of the test miner was designed and developed using PXI, embedded controller and LabVIEW. This real-time operating S/W was developed for an efficient test of test miner in a near seabed area. Moreover, database management system(DBMS) was developed too for the data management of test miner monitoring using MS SQL and LabVIEW.