• Title/Summary/Keyword: 심해무인잠수정

Search Result 31, Processing Time 0.021 seconds

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

Optimal Design of the Deep-sea Unmanned Vehicle Frame Design Sensitivity (심해용 무인잠수정 구조의 민감도해석에 의한 최적설계)

  • 이재환;허유정;정태환;이종무
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.28-34
    • /
    • 2004
  • This paper presents the results of the structural analysis and optimal design of the ROV to be operated at 6000m depth in the ocean. This will be the first domestic deep-sea ROV operating with an AUV and a launcher equipped with robot arms and the current weight is about 3 ton. initial optimal dimension of the frame is determined based on the stress analysis using FEA code ANSYS and design sensitivity and optimization results. The current design is the initial design and there is a possibility to change the design according to the modification of material, equipments and array of structure.

Non-Liner Dynamic Analysis of First Cable of Deep-Sea Unmanned Underwater Vehicle (심해무인잠수정 1차 케이블의 비선형 동적 해석)

  • KWON DO-YOUNG;PARK HAN-IL;JUNG DONG-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.123-130
    • /
    • 2004
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation of a deep-sea unmanned underwater vehicle. The first cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behaviour of the first marine cable. In this study, a numerical program is estabilished based on a finite difference method. The program is appled to a 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.

  • PDF

A Numerical Analysis for the Dynamic Behavior of the Umbilical Cable of a Deep-sea Unmanned Underwater Vehicle (심해 무인잠수정 1차 케이블의 동적거동 수치해석)

  • Kwon, Do-Young;Park, Han-Il;Jung, Dong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.31-38
    • /
    • 2005
  • Ocean developments gradually move to deep-sea in the 21 century. A deep-sea unmanned underwater vehicle is one of important tools for ocean resource survey. A marine cable plays an important role for the safe operation and signal transmission of a deep-sea unmanned underwater vehicle. The umbilical cable of a deep-sea unmanned underwater vehicle is excited by surface vessel motion and shows non-linear dynamic behaviors. A numerical method is necessary for analysing the dynamic behavior of a marine cable. In this study, a numerical program is established based on a finite difference method. The program is appled to 6000m long cable for a deep-sea unmanned underwater vehicle and shows good reasonable results.