• Title/Summary/Keyword: 심층 학습 모델

Search Result 294, Processing Time 0.023 seconds

A Study on DRL-based Efficient Asset Allocation Model for Economic Cycle-based Portfolio Optimization (심층강화학습 기반의 경기순환 주기별 효율적 자산 배분 모델 연구)

  • JUNG, NAK HYUN;Taeyeon Oh;Kim, Kang Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.573-588
    • /
    • 2023
  • Purpose: This study presents a research approach that utilizes deep reinforcement learning to construct optimal portfolios based on the business cycle for stocks and other assets. The objective is to develop effective investment strategies that adapt to the varying returns of assets in accordance with the business cycle. Methods: In this study, a diverse set of time series data, including stocks, is collected and utilized to train a deep reinforcement learning model. The proposed approach optimizes asset allocation based on the business cycle, particularly by gathering data for different states such as prosperity, recession, depression, and recovery and constructing portfolios optimized for each phase. Results: Experimental results confirm the effectiveness of the proposed deep reinforcement learning-based approach in constructing optimal portfolios tailored to the business cycle. The utility of optimizing portfolio investment strategies for each phase of the business cycle is demonstrated. Conclusion: This paper contributes to the construction of optimal portfolios based on the business cycle using a deep reinforcement learning approach, providing investors with effective investment strategies that simultaneously seek stability and profitability. As a result, investors can adopt stable and profitable investment strategies that adapt to business cycle volatility.

Development of Deep Learning Based Deterioration Prediction Model for the Maintenance Planning of Highway Pavement (도로포장의 유지관리 계획 수립을 위한 딥러닝 기반 열화 예측 모델 개발)

  • Lee, Yongjun;Sun, Jongwan;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.34-43
    • /
    • 2019
  • The maintenance cost for road pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance preventive maintenance requires the establishment of a strategic plan through accurate prediction of road pavement. Hence, In this study, the deep neural network(DNN) and the recurrent neural network(RNN) were used in order to develop the expressway pavement damage prediction model. A superior model among these two network models was then suggested by comparing and analyzing their performance. In order to solve the RNN's vanishing gradient problem, the LSTM (Long short-term memory) circuits which are a more complicated form of the RNN structure were used. The learning result showed that the RMSE value of the RNN-LSTM model was 0.102 which was lower than the RMSE value of the DNN model, indicating that the performance of the RNN-LSTM model was superior. In addition, high accuracy of the RNN-LSTM model was verified through the comparison between the estimated average road pavement condition and the actually measured road pavement condition of the target section over time.

Development of Coaching Model to Enhance Teaching Capability of Lifelong Educator (평생교육교수자의 교수역량 강화를 위한 코칭모델 개발)

  • Son, Sung Hwa;Kim, Jin Sook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.369-376
    • /
    • 2021
  • The purpose of this study is to develop a coaching model which can enhance teaching ability of lifelong educator. To achieve this purpose, this study verifies and analyzes several documentary records related with diverse teaching capabilities, operation reality and coaching method run by lifelong educator. Furthermore, an in-depth interview about teaching capability was undertaken for field experts who have worked at the institutions of lifelong education for more than 10 years. As a result, the study could develop a coaching model to identify teaching capability of lifelong educator by conducting matrix analysis. First, according to the documentary studies, the paradigm for lifelong education has been shifted to centralize learner's demand with the advent of 4th industrial revolution and it suggests coaching capability which could enhance educator's capability should come first. A lifelong educator should have capabilities including identification of vision and goal, creation of mission declaration, development of coaching skill and procedure, management of crisis and coaching capability as an expert in the lifelong education field. Second, a model which can centralize learners could be developed for lifelong teaching capability by adopting a teaching capability suggested by field experts, According to the experts, it is essential to develop a program model to acquire professional knowledge, communication capability, understanding of adult learner, personal relations capability. If there is a model which can develop such capabilities, it is able to strengthen lifelong teaching capability to focus on learner's demand, mainly adult learners, a major consumer of the field. Third, a coaching model to enhance teaching capability for an educator is to acquire and implement sufficient step-by-step teaching capability which has been suggested from a procedure comprised of entrance, progress, critique and return. This, present study suggests, after the critique, a lifelong educator oneself can newly develop and extend a teaching capability basis on pursuing teaching capability as a lifelong educator through the return process.

Many-to-many voice conversion experiments using a Korean speech corpus (다수 화자 한국어 음성 변환 실험)

  • Yook, Dongsuk;Seo, HyungJin;Ko, Bonggu;Yoo, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.351-358
    • /
    • 2022
  • Recently, Generative Adversarial Networks (GAN) and Variational AutoEncoders (VAE) have been applied to voice conversion that can make use of non-parallel training data. Especially, Conditional Cycle-Consistent Generative Adversarial Networks (CC-GAN) and Cycle-Consistent Variational AutoEncoders (CycleVAE) show promising results in many-to-many voice conversion among multiple speakers. However, the number of speakers has been relatively small in the conventional voice conversion studies using the CC-GANs and the CycleVAEs. In this paper, we extend the number of speakers to 100, and analyze the performances of the many-to-many voice conversion methods experimentally. It has been found through the experiments that the CC-GAN shows 4.5 % less Mel-Cepstral Distortion (MCD) for a small number of speakers, whereas the CycleVAE shows 12.7 % less MCD in a limited training time for a large number of speakers.

Applicability Evaluation of Automated Machine Learning and Deep Neural Networks for Arctic Sea Ice Surface Temperature Estimation (북극 해빙표면온도 산출을 위한 Automated Machine Learning과 Deep Neural Network의 적용성 평가)

  • Sungwoo Park;Noh-Hun Seong;Suyoung Sim;Daeseong Jung;Jongho Woo;Nayeon Kim;Honghee Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1491-1495
    • /
    • 2023
  • This study utilized automated machine learning (AutoML) to calculate Arctic ice surface temperature (IST). AutoML-derived IST exhibited a strong correlation coefficient (R) of 0.97 and a root mean squared error (RMSE) of 2.51K. Comparative analysis with deep neural network (DNN) models revealed that AutoML IST demonstrated good accuracy, particularly when compared to Moderate Resolution Imaging Spectroradiometer (MODIS) IST and ice mass balance (IMB) buoy IST. These findings underscore the effectiveness of AutoML in enhancing IST estimation accuracy under challenging polar conditions.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

Research on Ways to Improve Science Teacher Education to Develop Students' Key Competencies (학습자의 핵심역량 제고를 위한 과학 교사교육 개선 방안)

  • Kwak, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.162-169
    • /
    • 2012
  • The purpose of this research is to investigate ways to improve science teacher education in order to subsequently develop students' key competencies. Since the OECD redefined key competencies as 'what people should know and be able to do in order to lead a successful life in a well-functioning society, many countries have emphasized competency-based curriculum. In this research, we collected and analyzed foreign and domestic classroom cases that have implemented competency-based curriculum in science teaching. Through open-ended interviews with the teachers and principals we explored ways to improve science teacher education to develop students' key competencies. According to the results, the competency-based curriculum necessitates a shift in teachers' roles including teachers as role models for their students, multifaceted roles of teachers, and teachers as researchers. In light of the teacher's community, teachers need to form a professional learning community, increase practice-based professional development opportunities, build the teacher's knowledge base, put various experts into the classroom, and build a partnership with the local community and other experts. In the conclusion section, we also discussed institutional and political supports necessary for the competency based education.

Deep Learning Similarity-based 1:1 Matching Method for Real Product Image and Drawing Image

  • Han, Gi-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.59-68
    • /
    • 2022
  • This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Object Detection on the Road Environment Using Attention Module-based Lightweight Mask R-CNN (주의 모듈 기반 Mask R-CNN 경량화 모델을 이용한 도로 환경 내 객체 검출 방법)

  • Song, Minsoo;Kim, Wonjun;Jang, Rae-Young;Lee, Ryong;Park, Min-Woo;Lee, Sang-Hwan;Choi, Myung-seok
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.944-953
    • /
    • 2020
  • Object detection plays a crucial role in a self-driving system. With the advances of image recognition based on deep convolutional neural networks, researches on object detection have been actively explored. In this paper, we proposed a lightweight model of the mask R-CNN, which has been most widely used for object detection, to efficiently predict location and shape of various objects on the road environment. Furthermore, feature maps are adaptively re-calibrated to improve the detection performance by applying an attention module to the neural network layer that plays different roles within the mask R-CNN. Various experimental results for real driving scenes demonstrate that the proposed method is able to maintain the high detection performance with significantly reduced network parameters.