• 제목/요약/키워드: 심층신경망 기술

Search Result 150, Processing Time 0.025 seconds

The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning (기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구)

  • Lee, Se-Hyeok;Kim, Seung-Hyun;Woo, Yonghoon;Moon, Jae-Pil;Yang, Inchul
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.31-42
    • /
    • 2021
  • Database of Cut-slope management system (CSMS) has been constructed based on investigations of all slopes on the roads of the whole country. The investigation data is documented by human, so it is inevitable to avoid human-error such as missing-data and incorrect entering data into computer. The goal of this paper is constructing a prediction model based on several machine-learning algorithms to solve those imperfection problems of the CSMS data. First of all, the character-type data in CSMS data must be transformed to numeric data. After then, two algorithms, i.g., multinomial logistic regression and deep-neural-network (DNN), are performed, and those prediction models from two algorithms are compared. Finally, it is identified that the accuracy of DNN-model is better than logistic model, and the DNN-model will be utilized to improve data-quality.

Improving the speed of deep neural networks using the multi-core and single instruction multiple data technology (다중 코어 및 single instruction multiple data 기술을 이용한 심층 신경망 속도 향상)

  • Chung, Ik Joo;Kim, Seung Hi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.425-435
    • /
    • 2017
  • In this paper, we propose optimization methods for speeding the feedforward network of deep neural networks using NEON SIMD (Single Instruction Multiple Data) parallel instructions and multi-core parallelization on the multi-core ARM processor. As the result of the optimization using SIMD parallel instructions, we present the amount of speed improvement and arithmetic precision stage by stage. Through the optimization using SIMD parallel instructions on the single core, we obtain $2.6{\times}$ speedup over the baseline implementation using C compiler. Furthermore, by parallelizing the single core implementation on the multi-core, we obtain $5.7{\times}{\sim}7.7{\times}$ speedup. The results we obtain show the possibility for applying the arithmetic-intensive deep neural network technology to applications on mobile devices.

Road Surface Damage Detection based on Object Recognition using Fast R-CNN (Fast R-CNN을 이용한 객체 인식 기반의 도로 노면 파손 탐지 기법)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2019
  • The road management institute needs lots of cost to repair road surface damage. These damages are inevitable due to natural factors and aging, but maintenance technologies for efficient repair of the broken road are needed. Various technologies have been developed and applied to cope with such a demand. Recently, maintenance technology for road surface damage repair is being developed using image information collected in the form of a black box installed in a vehicle. There are various methods to extract the damaged region, however, we will discuss the image recognition technology of the deep neural network structure that is actively studied recently. In this paper, we introduce a new neural network which can estimate the road damage and its location in the image by region-based convolution neural network algorithm. In order to develop the algorithm, about 600 images were collected through actual driving. Then, learning was carried out and compared with the existing model, we developed a neural network with 10.67% accuracy.

Calibration of Pre-trained Language Model for Korean (사전 학습된 한국어 언어 모델의 보정)

  • Jeong, Soyeong;Yang, Wonsuk;Park, ChaeHun;Park, Jong C.
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF

Classification of Respiratory States based on Visual Information using Deep Learning (심층학습을 이용한 영상정보 기반 호흡신호 분류)

  • Song, Joohyun;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.296-302
    • /
    • 2021
  • This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.

Class Language Model based on Word Embedding and POS Tagging (워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구)

  • Chung, Euisok;Park, Jeon-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.315-319
    • /
    • 2016
  • Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.

Development and Evaluation of Automatic Pothole Detection Using Fully Convolutional Neural Networks (완전 합성곱 신경망을 활용한 자동 포트홀 탐지 기술의 개발 및 평가)

  • Chun, Chanjun;Shim, Seungbo;Kang, Sungmo;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.5
    • /
    • pp.55-64
    • /
    • 2018
  • In this paper, we propose fully convolutional neural networks based automatic detection of a pothole that directly causes driver's safety accidents and the vehicle damage. First, the training DB is collected through the camera installed in the vehicle while driving on the road, and the model is trained in the form of a semantic segmentation using the fully convolutional neural networks. In order to generate robust performance in a dark environment, we augmented the training DB according to brightness, and finally generated a total of 30,000 training images. In addition, a total of 450 evaluation DB was created to verify the performance of the proposed automatic pothole detection, and a total of four experts evaluated each image. As a result, the proposed pothole detection showed robust performance for missing.

Generation of optical fringe patterns using deep learning (딥러닝을 이용한 광학적 프린지 패턴의 생성)

  • Kang, Ji-Won;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1588-1594
    • /
    • 2020
  • In this paper, we discuss a data balancing method for learning a neural network that generates digital holograms using a deep neural network (DNN). Deep neural networks are based on deep learning (DL) technology and use a generative adversarial network (GAN) series. The fringe pattern, which is the basic unit of a hologram to be created through a deep neural network, has very different data types depending on the hologram plane and the position of the object. However, because the criteria for classifying the data are not clear, an imbalance in the training data may occur. The imbalance of learning data acts as a factor of instability in learning. Therefore, it presents a method for classifying and balancing data for which the classification criteria are not clear. And it shows that learning is stabilized through this.

Multiple classification recommendation system using spatial combination and deep learning (공간 결합과 심층신경망을 활용한 관광지 다중 분류 추천 시스템)

  • An, Hyeon Woo;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.43-46
    • /
    • 2019
  • 관광지에 대한 관광객의 평가는 날씨, 계절, 관광객의 밀집 정도 등 다양한 환경적 요소에 따라 변화한다. 각 관광지는 객관적인 관점으로 최상의 관광을 경험하게 할 고유한 컨디션이 존재하며 이를 추출하기 위해선 관광에 영향을 주는 여러 환경들에 대한 다중 요인 분석이 가능할 만큼의 정보가 필요하다. 본 논문에서는 심층신경망을 기반으로 한 문장분석기술을 응용하여 관광지 리뷰에 적용, 평점이 포함되지 않은 리뷰에 평점을 추가하여 기상이나 계절, 휴무일 등의 다양한 분류가 가능할 수준의 데이터를 보충하고 축적/보충된 방대한 평점데이터를 토대로 맞춤 추천이 가능하도록 하는 시스템을 설명한다. 이에 본 논문은 학습 환경 구축, 리뷰와 기상 정보의 결합, 최종 추천 방법 등 전반적인 프로세스에 대한 내용을 설명한다.

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.