심층 신경망 기술은 실시간 예측 서비스를 위한 다양한 응용 분야에 적용되고 있다. 그뿐만 아니라 최근에는 민감한 개인 정보나 중요 정보들도 이러한 심층 신경망 기술을 통해 처리되면서 보안에 관한 관심이 높아지고 있다. 본 논문에서는 이러한 심층 신경망의 보안을 위해 하드웨어 기반의 안전한 수행환경에서 심층 신경망을 수행함으로써 연산 과정을 보호하는 연구들과 안전한 수행환경 내에서도 효율적인 심층 신경망 처리 기술들을 살펴볼 것이다. 그리고 이러한 연구 동향을 토대로 앞으로의 심층 신경망 연산 보호 기술의 연구 방향에 대해 논하도록 하겠다.
최근 생체 정보를 이용한 사용자 인증 기술이 발전하면서 이를 모바일 기기에 적용하는 사례가 크게 증가하고 있다. 특히, 얼굴 기반 인증 방식은 비접촉식이며 사용이 편리하여 적용 범위가 점점 확대되고 있는 추세이다. 그러나, 사용자의 얼굴 사진이나 동영상 등을 이용한 위변조가 용이하기 때문에 모바일 기기 내 보안 유지에 어려움을 야기한다. 본 고에서는 이러한 문제를 해결하기 위해 최근 활발히 연구되고 있는 심층신경망 기반 얼굴 위변조 검출 연구의 최신 동향을 소개하고자 한다. 먼저, 기본 합성곱 신경망 구조부터 생성모델 기반의 위변조 검출 방법까지 다양한 신경망 구조를 이용한 위변조 검출 방법에 대해 설명한다. 또한, 심층신경망 학습을 위해 사용되는 얼굴 위변조 데이터셋에 대해서도 간략히 살펴보고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.43-46
/
2021
최근 기계 임무수행에 사용되는 데이터양이 증가함에 따라 기계를 위한 효율적인 영상 압축방식의 필요성이 높아졌다. 기존의 비디오 코덱은 HVS (Human Visual System) 특성을 고려한 기술이기 때문에 부호화 과정에서 기계 임무수행에 필요하지 않은 정보를 효과적으로 제거할 수 없다. 반면 심층신경망 기반 압축네트워크의 경우, 원본 영상으로부터 기계 임무수행에 필수적인 데이터만을 추출하여 부호화 하도록 학습할 수 있는 장점이 있다. 본 논문에서는 압축 심층신경망과 기계 임무수행 네트워크로 구성되는 VCM (Video Coding for Machine) 프레임워크를 제안하고 학습에 의한 압축효율 향상을 검증한다. 이를 위해 압축 심층신경망을 객체탐지 임무수행 네트워크와 함께 학습시킨 결과, VVC (Versatile Video Coding) 대비 평균 61.16%의 BD-rate 감소가 확인되었다. 뿐만 아니라, 학습된 압축 심층신경망은 객체분할 임무수행에서도 VVC 대비 평균 58.43%의 BD-rate 감소를 보여 다중 기계 임무의 효율적 수행이 가능함을 확인할 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2018.11a
/
pp.194-196
/
2018
본 논문은 가상현실 음향 구현을 위한 심층신경망 기반 사운드 보간 방법에 관한 것으로서, 이를 통해 두 지점에서 취득한 음향 신호들을 사용하여 두 지점 사이의 음향을 생성한다. 산술평균이나 기하평균 같은 통계적 방법으로 사운드 보간을 수행할 수 있지만 이는 실제 비선형 음향 특성을 반영하기에 미흡하다. 이러한 문제를 해결하기 위해서 본 연구에서는 두 지점들과 목표 지점의 음향신호를 기반으로 심층신경망을 훈련하여 사운드 보간을 시도하였으며, 실험결과 통계적 방법에 비해 심층신경망 기반 사운드 보간 방법의 성능이 우수함을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.70-73
/
2021
최근 영상 및 비디오 분야에 심층 신경망(DNN, Deep Neural Network)을 사용한 연구가 다양하게 진행됨에 따라 High Dynamic Range (HDR) 이미징 기술에서도 기존의 방법들 보다 우수한 성능을 보이는 심층 신경망 모델들이 등장하였다. 하지만, 심층 신경망을 사용한 방법은 큰 연산량과 많은 GPU 메모리를 사용한다는 문제점이 존재하며, 이는 심층 신경망 기반 기술들의 현실 적용 가능성에 제한이 되고 있다. 이에 본 논문에서는 제한된 연산량과 GPU 메모리 조건에서도 사용 가능한 다중 노출 HDR 경량화 심층 신경망을 제안한다. Kalantari Dataset에 대해 기존 HDR 모델들과의 성능 평가를 진행해 본 결과, PSNR-µ와 PSNR-l 수치에서 GPU 메모리 사용량 대비 우수한 성능을 보임을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.31-32
/
2017
본 논문에서는 심층 신경망 기반의 사운드 분류를 위한 청각 특성 추출 기술을 제안한다. 심층 신경망은 인간의 신경망을 모델링 하기 때문에 인간의 인식을 기반으로 하는 특성을 사용한다면 더 적합한 학습을 할 수 있다. 기존 방법인 MFCC와 스펙트로그램과는 달리 스파이크그램은 인간의 청각 시스템을 기반으로 파형을 해석하는 방법이기 때문에 심층 신경망에 더 효율적인 특성이라고 할 수 있다. 따라서 본 논문에서는 사운드 분류 기술의 특성으로 스파이크그램을 이용하는 방법을 제안한다. 제안한 방법을 사용하면 MFCC와 스펙트로그램을 사용하는 것보다 더 높은 분류 성능을 얻을 수 있다.
다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.
In this paper, we propose a deep neural network-based sound interpolation method for realizing virtual reality sound. Through this method, sound between two points is generated by using acoustic signals obtained from two points. Sound interpolation can be performed by statistical methods such as arithmetic mean or geometric mean, but this is insufficient to reflect actual nonlinear acoustic characteristics. In order to solve this problem, in this study, the sound interpolation is performed by training the deep neural network based on the acoustic signals of the two points and the target point, and the experimental results show that the deep neural network-based sound interpolation method is superior to the statistical methods.
This study applied deep convolution neural network based on U-Net and SegNet using long period weather radar data to very short-term rainfall prediction. And the results were compared and evaluated with the translation model. For training and validation of deep neural network, Mt. Gwanak and Mt. Gwangdeoksan radar data were collected from 2010 to 2016 and converted to a gray-scale image file in an HDF5 format with a 1km spatial resolution. The deep neural network model was trained to predict precipitation after 10 minutes by using the four consecutive radar image data, and the recursive method of repeating forecasts was applied to carry out lead time 60 minutes with the pretrained deep neural network model. To evaluate the performance of deep neural network prediction model, 24 rain cases in 2017 were forecast for rainfall up to 60 minutes in advance. As a result of evaluating the predicted performance by calculating the mean absolute error (MAE) and critical success index (CSI) at the threshold of 0.1, 1, and 5 mm/hr, the deep neural network model showed better performance in the case of rainfall threshold of 0.1, 1 mm/hr in terms of MAE, and showed better performance than the translation model for lead time 50 minutes in terms of CSI. In particular, although the deep neural network prediction model performed generally better than the translation model for weak rainfall of 5 mm/hr or less, the deep neural network prediction model had limitations in predicting distinct precipitation characteristics of high intensity as a result of the evaluation of threshold of 5 mm/hr. The longer lead time, the spatial smoothness increase with lead time thereby reducing the accuracy of rainfall prediction The translation model turned out to be superior in predicting the exceedance of higher intensity thresholds (> 5 mm/hr) because it preserves distinct precipitation characteristics, but the rainfall position tends to shift incorrectly. This study are expected to be helpful for the improvement of radar rainfall prediction model using deep neural networks in the future. In addition, the massive weather radar data established in this study will be provided through open repositories for future use in subsequent studies.
In recent years, the use of artificial intelligence technology such as deep neural net machine learning(deep learning) is becoming an effective and practical option in industrial manufacturing process. This study focuses on recent deep learning development environments and their applications in the manufacturing field.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.