• 제목/요약/키워드: 심층망

검색결과 549건 처리시간 0.033초

심층신경망을 이용한 소스 코드 원작자 식별 (Souce Code Identification Using Deep Neural Network)

  • 임지수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권9호
    • /
    • pp.373-378
    • /
    • 2019
  • 현재 프로그래밍 소스들이 온라인에서 공개되어 있기 때문에 무분별한 표절이나 저작권에 대한 문제가 일어나고 있다. 그 중 반복된 저자가 작성한 소스코드는 프로그래밍 특성상 고유의 지문이 있을 수 있다. 본 논문은 구글 코드 잼 프로그램 소스를 심층신경망을 이용한 학습을 통해 각각의 저자를 분별하는 것이다. 이 때 원작자의 소스를 예측 기반 벡터나, 주파수 기반 접근법인 TF-IDF등의 전처리기를 사용하여 입력값들을 벡터화해주고, 심층신경망을 이용한 학습을 통해 각 프로그램 소스 원작자를 식별하고자 한다. 전처리기를 이용하여 언어에 독립적인 학습시스템을 구성하고, 기존의 다른 학습 방법들과 비교하였다. 그 중 TF-IDF와 심층신경망을 사용한 모델은 다른 전처리기나 다른 학습방식을 사용한 것보다 좋은 성능을 보임을 확인하였다.

심층 신경망 병렬 학습 방법 연구 동향 (A survey on parallel training algorithms for deep neural networks)

  • 육동석;이효원;유인철
    • 한국음향학회지
    • /
    • 제39권6호
    • /
    • pp.505-514
    • /
    • 2020
  • 심층 신경망(Deep Neural Network, DNN) 모델을 대량의 학습 데이터로 학습시키기 위해서는 많은 시간이 소요되기 때문에 병렬 학습 방법이 필요하다. DNN의 학습에는 일반적으로 Stochastic Gradient Descent(SGD) 방법이 사용되는데, SGD는 근본적으로 순차적인 처리가 필요하므로 병렬화하기 위해서는 다양한 근사(approximation) 방법을 적용하게 된다. 본 논문에서는 기존의 DNN 병렬 학습 알고리즘들을 소개하고 연산량, 통신량, 근사 방법 등을 분석한다.

스마트 빌딩 시스템을 위한 심층 강화학습 기반 양방향 전력거래 협상 기법 (Bi-directional Electricity Negotiation Scheme based on Deep Reinforcement Learning Algorithm in Smart Building Systems)

  • 이동구;이지영;경찬욱;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.215-219
    • /
    • 2021
  • 본 논문에서는 스마트 빌딩 시스템과 전력망이 각각의 전력거래 희망가격을 제안하고 조정하는 양방향 전력거래 협상 기법에 심층 강화학습 기법을 적용한 전력거래 기법을 제안한다. 심층 강화학습 기법 중 하나인 deep Q network 알고리즘을 적용하여 스마트 빌딩과 전력망의 거래 희망가격을 조정하도록 하였다. 제안하는 심층 강화학습 기반 양방향 전력거래 협상 알고리즘은 학습과정에서 평균 43.78회의 협상을 통해 가격 협의에 이르는 것을 실험을 통해 확인하였다. 또한, 본 연구에서 설정한 협상 시나리오에 따라 스마트 빌딩과 전력망이 거래 희망가격을 조정하는 과정을 실험을 통해 확인하였다.

Fully Convolutional Network 기반 관심 영역 검출 기법의 속도 개선 연구 (A Study on Improving Speed of Interesting Region Detection Based on Fully Convolutional Network)

  • 황현수;정진우;김용환;최윤식
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.322-325
    • /
    • 2018
  • 영상의 관심 영역 검출은 영상처리 및 컴퓨터 비전 응용 분야에서 꾸준하게 사용되고 있는 기법이다. 특히, 근래 심층신경망 연구의 급격한 발전에 힘입어 심층신경망을 이용한 관심 영역 검출 기법에 대한 연구가 활발하게 진행되고 있다. 한편 Fully Convolutional Network(이하 FCN)은 본래 심층 예측(Dense Prediction)을 통한 의미론적 영상 분할(Semantic Segmentation)을 수행하기 위해 제안된 심층신경망 구조이다. FCN을 영상의 관심 영역 검출에 활용하여도 기존 관심 영역 검출 기법과 비교하여 충분히 좋은 성능을 발휘할 수 있다. 그러나 FCN에 사용되는 convolution 층의 수가 많고, 이에 따른 가중치(weight)의 개수도 기하급수적으로 늘어나 검출에 필요한 시간 복잡도가 매우 크다는 문제점이 있다. 따라서 본 논문에서는 기존 FCN이 가진 검출 시간 복잡도의 문제점을 convolution 층의 가중치 관점에서 해결하고자 이를 조절하여 FCN의 관심 영역 검출 속도를 향상시키는 방법을 제안한다. 적절한 convolution 층의 가중치를 조절함으로써, MSRA10K 데이터셋 환경에서 검출 정확도를 크게 저하시키지 않고도 최대 약 20.5%만큼 검출 속도를 향상시킬 수 있었다.

  • PDF

온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발 (Development of a deep neural network model to estimate solar radiation using temperature and precipitation)

  • 강대균;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제21권2호
    • /
    • pp.85-96
    • /
    • 2019
  • 일사량은 자연 생태계와 농업 생태계에서 에너지 수지와 물 순환을 추정하는데 중요한 변수이다. 일별 일사량을 추정하기 위해 심층 신경망(DNN) 모델이 개발되었다. 일조시간 등의 변수보다 기상 관측소에서의 가용성이 더 높은 온도와 강수량이 심층 신경망 모델의 입력 자료로 사용되었다. five-fold crossvalidation 을 사용하여 심층 신경망을 훈련시키고 검증하였다. 국내 15 개의 기상 관측소에서 30 년 이상 장기간의 기상 자료가 수집되었다. Cross-validation을 통해 얻어진 심층 신경망 모델은 수원 지역 기상 관측소의 일별 일사량 추정치에 대해 비교적 작은 RMSE($3.75MJ\;m^{-2}\;d^{-1}$) 값을 가졌다. 심층 신경망 모델은 수원 지역 기상 관측소의 일사량의 변위의 약 68%를 설명했다. 1985 년과 1998 년의 일사량 관측값은 일조시간에 비해 상당히 낮은 값이 관측되었다. 이는 후속 연구에서 일사량 관측 데이터의 품질 평가가 필요할 것임을 시사했다. 해당 연도의 데이터를 분석에서 제외했을 때, 심층 신경망 모델의 추정값은 통계적 수치가 약간 높게 나타났다. 예를 들어, $R^2$ 와 RMSE 의 값은 각각 0.72 와 $3.55MJ\;m^{-2}\;d^{-1}$ 이었다. 심층 신경망 모델은 기온과 강수량을 통해 일사량을 추정하는데 유용하며, 이는 미래 기후 시나리오 자료에 대해서 활용할 수 있을 것이다. 따라서, 공간에 대한 제약이 완화된 심층 신경망 모델은 작물 모델의 입력 자료로 일사량이 필요한 작물 생산성에 대한 기후 변화 영향 평가에 유용하게 활용될 수 있을 것이다.

텍스트 마이닝에서 심층 신경망을 이용한 문서 분류 (Document classification using a deep neural network in text mining)

  • 이보희;이수진;최용석
    • 응용통계연구
    • /
    • 제33권5호
    • /
    • pp.615-625
    • /
    • 2020
  • 문서-용어 빈도행렬은 그룹정보가 존재하는 문서들의 용어를 추출한 것으로 일반적인 텍스트 마이닝에서의 자료이다. 본 연구에서는 연구 분야 성격에 따른 문서 분류를 위해 문서-용어 빈도행렬을 생성하고, 전통적인 용어 가중치 함수인 TF-IDF와 최근 잘 알려진 용어 가중치 함수인 TF-IGM을 적용하였다. 또 용어 가중치가 적용된 문서-용어 가중행렬에 문서분류 정확도 향상을 위해 핵심어를 추출하여 문서-핵심어 가중행렬을 생성하였다. 핵심어가 추출된 행렬을 바탕으로, 심층 신경망을 이용해 문서를 분류하였다. 심층 신경망에서 최적의 모델을 찾기 위해 매개변수인 은닉층과 은닉노드수를 변화해가며 문서 분류 정확도를 확인하였다. 그 결과 8개의 은닉층을 가진 심층 신경망 모델이 가장 높은 정확도를 보였으며 매개변수 변화에 따른 모든 TF-IGM 문서 분류 정확도가 TF-IDF 문서 분류 정확도보다 높은 것을 확인하였다. 또한 개별 범주에 대한 문서 분류 분석 결과를 서포트 벡터 머신과 비교했을 때 심층 신경망이 대부분의 결과에서 더 좋은 정확도를 보임을 확인하였다.

멀티태스크 러닝 심층신경망을 이용한 화자인증에서의 나이 정보 활용 (Utilization of age information for speaker verification using multi-task learning deep neural networks)

  • 김주호;허희수;정지원;심혜진;김승빈;유하진
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.593-600
    • /
    • 2019
  • 화자 간 음색의 유사성은 화자 인증 시스템의 성능을 하락 시킬 수 있는 요인이다. 본 논문은 화자 인증 시스템의 일반화 성능을 향상시키기 위해, 심층신경망에 멀티태스크 러닝 기법을 적용시켜 발화자의 화자 정보와 나이 정보를 함께 학습 시키는 기법을 제안한다. 멀티태스크 러닝 기법은 은닉층들이 하나의 태스크에 과적합 되지 않도록 하여 심층신경망의 일반화 성능을 향상시킨다고 알려져 있다. 하지만 심층신경망을 멀티태스크 러닝 기법으로 학습시키는 과정에서, 나이 정보에 대한 학습이 효율적으로 수행되지 않는 것을 실험적으로 확인하였다. 이와 같은 현상을 방지하기 위해, 본 논문에서는 심층신경망의 학습 과정 중 화자 식별과 나이 추정 목적 함수의 가중치를 동적으로 변경 하는 기법을 제안한다. 동일 오류율을 기준으로 RSR2015 평가 데이터세트에 대해 화자 인증 성능을 평가한 결과 나이 정보를 활용하지 않은 화자 인증 시스템의 경우 6.91 %, 나이 정보를 활용한 화자 인증 시스템의 경우 6.77 %, 나이 정보를 활용한 화자 인증 시스템에 가중치 변경 기법을 적용한 경우 4.73 %의 오류율을 확인하였다.

짧은 음성을 대상으로 하는 화자 확인을 위한 심층 신경망 (Deep neural networks for speaker verification with short speech utterances)

  • 양일호;허희수;윤성현;유하진
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.501-509
    • /
    • 2016
  • 본 논문에서는 짧은 테스트 발성에 대한 화자 확인 성능을 개선하는 방법을 제안한다. 테스트 발성의 길이가 짧을 경우 i-벡터/확률적 선형판별분석 기반 화자 확인 시스템의 성능이 하락한다. 제안한 방법은 짧은 발성으로부터 추출한 특징 벡터를 심층 신경망으로 변환하여 발성 길이에 따른 변이를 보상한다. 이 때, 학습시의 출력 레이블에 따라 세 종류의 심층 신경망 이용 방법을 제안한다. 각 신경망은 입력 받은 짧은 발성 특징에 대한 출력 결과와 원래의 긴 발성으로부터 추출한 특징과의 차이를 줄이도록 학습한다. NIST (National Institute of Standards Technology, 미국) 2008 SRE(Speaker Recognition Evaluation) 코퍼스의 short 2-10 s 조건 하에서 제안한 방법의 성능을 평가한다. 실험 결과 부류 내 분산 정규화 및 선형 판별 분석을 이용하는 기존 방법에 비해 최소 검출 비용이 감소하는 것을 확인하였다. 또한 짧은 발성 분산 정규화 기반 방법과도 성능을 비교하였다.

심층 신경망을 이용한 영상 내 파프리카 인식 알고리즘 연구 (A Study on the Recognition Algorithm of Paprika in the Images using the Deep Neural Networks)

  • 화지호;이봉기;이대원
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.142-142
    • /
    • 2017
  • 본 연구에서는 파프리카를 자동 수확하기 위한 시스템 개발의 일환으로 파프리카 재배환경에서 획득한 영상 내에 존재하는 파프리카 영역과 비 파프리카 영역의 RGB 정보를 입력으로 하는 인공신경망을 설계하고 학습을 수행하고자 하였다. 학습된 신경망을 이용하여 영상 내 파프리카 영역과 비 파프리카 영역의 구분이 가능 할 것으로 사료된다. 심층 신경망을 설계하기 위하여 MS Visual studio 2015의 C++, MFC와 Python 및 TensorFlow를 사용하였다. 먼저, 심층 신경망은 입력층과 출력층, 그리고 은닉층 8개를 가지는 형태로 입력 뉴런 3개, 출력 뉴런 4개, 각 은닉층의 뉴런은 5개로 설계하였다. 일반적으로 심층 신경망에서는 은닉층이 깊을수록 적은 입력으로 좋은 학습 결과를 기대 할 수 있지만 소요되는 시간이 길고 오버 피팅이 일어날 가능성이 높아진다. 따라서 본 연구에서는 소요시간을 줄이기 위하여 Xavier 초기화를 사용하였으며, 오버 피팅을 줄이기 위하여 ReLU 함수를 활성화 함수로 사용하였다. 파프리카 재배환경에서 획득한 영상에서 파프리카 영역과 비 파프리카 영역의 RGB 정보를 추출하여 학습의 입력으로 하고 기대 출력으로 붉은색 파프리카의 경우 [0 0 1], 노란색 파프리카의 경우 [0 1 0], 비 파프리카 영역의 경우 [1 0 0]으로 하는 형태로 3538개의 학습 셋을 만들었다. 학습 후 학습 결과를 평가하기 위하여 30개의 테스트 셋을 사용하였다. 학습 셋을 이용하여 학습을 수행하기 위해 학습률을 변경하면서 학습 결과를 확인하였다. 학습률을 0.01 이상으로 설정한 경우 학습이 이루어지지 않았다. 이는 학습률에 의해 결정되는 가중치의 변화량이 너무 커서 비용 함수의 결과가 0에 수렴하지 않고 발산하는 경향에 의한 것으로 사료된다. 학습률을 0.005, 0.001로 설정 한 경우 학습에 성공하였다. 학습률 0.005의 경우 학습 횟수 3146회, 소요시간 20.48초, 학습 정확도 99.77%, 테스트 정확도 100%였으며, 학습률 0.001의 경우 학습 횟수 38931회, 소요시간 181.39초, 학습 정확도 99.95%, 테스트 정확도 100%였다. 학습률이 작을수록 더욱 정확한 학습이 가능하지만 소요되는 시간이 크고 국부 최소점에 빠질 확률이 높았다. 학습률이 큰 경우 학습 소요 시간이 줄어드는 반면 학습 과정에서 비용이 발산하여 학습이 이루어지지 않는 경우가 많음을 확인 하였다.

  • PDF

사전 학습된 한국어 언어 모델의 보정 (Calibration of Pre-trained Language Model for Korean)

  • 정소영;양원석;박채훈;박종철
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.243-248
    • /
    • 2020
  • 인공 신경망을 통한 심층 학습 모델의 발전은 컴퓨터 비전, 자연언어 이해 문제들에서 인간을 뛰어넘는 성능을 보이고 있다. 특히 트랜스포머[1] 기반의 사전 학습 모델은 질의응답, 대화문과 같은 자연언어 이해 문제에서 최근 높은 성능을 보이고 있다. 하지만 트랜스포머 기반의 모델과 같은 심층 학습 모델의 급격한 발전 양상에 비해, 이의 동작 방식은 상대적으로 잘 알려져 있지 않다. 인공 신경망을 통한 심층 학습 모델을 해석하는 방법으로 모델의 예측 값과 실제 값이 얼마나 일치하는지를 측정하는 모델의 보정(Calibration)이 있다. 본 연구는 한국어 기반의 심층학습 모델의 해석을 위해 모델의 보정을 수행하였다. 그리고 사전 학습된 한국어 언어 모델이 문장이 내포하는 애매성을 잘 파악하는지의 여부를 확인하고, 완화 기법들을 적용하여 문장의 애매성을 확신 수준을 통해 정량적으로 출력할 수 있도록 하였다. 또한 한국어의 문법적 특징으로 인한 문장의 의미 변화를 모델 보정 관점에서 평가하여 한국어의 문법적 특징을 심층학습 언어 모델이 잘 이해하고 있는지를 정량적으로 확인하였다.

  • PDF