• Title/Summary/Keyword: 심전도 측정 장비

Search Result 24, Processing Time 0.022 seconds

Device Adapter Model based on Dynamic Management Module for u-Health gateway (u-헬스 게이트웨이를 위한 동적 관리 모듈 기반의 디바이스 어댑터 모델)

  • Kim, Jong-Tak;Song, Si-Yun;Hwang, Hee-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.41-48
    • /
    • 2010
  • It is essential to guarantee a smooth communication and data exchange in a PHD(Personal Healthcare Device) network for applications providing U-health services. In spite of that, most of PHDs are heterogeneous, so the heterogeneity of their protocols makes it difficult to develop an integrated gateway sending sensed healthcare data to U-health service providers. To solve this problem, we suggest the design and implementation of a device adapter model based on dynamic managed module in this paper. Our model were implemented to work on the OSGi-based gateway middleware and to have interoperability in connection with the HL7 system that is the standard of the Healthcare Information systems. In addition, our model has an architecture supporting a communication based on the object serialization in order to provide extensibility in the functional aspect of applications. Through the experiment on a test-bed which is an implementation of the device adapter module for electrocardiogram and blood-pressure/blood-sugar device having one channel, we have confirmed the accuracy of sensing and sending data.

Analysis of Change Rate of SBP and DBP Estimation Fusion Algorithm According to PTT Measurement change PPG Pulse Wave Analysis (PPG 맥파 분석의 PTT 측정변화에 따른 SBP, DBP 추정 융합 알고리즘 변화율 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.35-40
    • /
    • 2020
  • Recently, devices such as smart watches capable of measuring small biosignals have been released. Body composition, blood pressure, heart rate, and oxygen saturation can be easily obtained. However, the part that is not trusted by the user is accuracy. These biosignals are sensitive to the external environment and have large fluctuations depending on the conditions inside the subject's body. Blood pressure measurements, in particular, still give different results, depending on how the conditions in the body are handled. Therefore, in this study, PPG was analyzed to measure PTT at two points of 80% and 100%, the highest in PTT measurement. The effect of the measured value on SBP and DBP was analyzed and a method was proposed to increase the accuracy. As a result of the study, the measured value of PTT at 80% of the peak PPG is more effective in estimating blood pressure of SBP and DBP than the value measured at 100%. In the regression analysis of the rate of change blood pressure estimation, the coefficient of determination of SBP (80%) was 0.6946, and DBP (100%) was 0.547.

A Study of Evaluating VR Learning Styles on User Attention and Memory (가상현실 교육설계방식에 따른 학습자 주의와 학습 기억에 관한 연구)

  • Park, Kyoung-Shin;Goo, Ja-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.119-126
    • /
    • 2007
  • This paper presents a study investigating the effects of VR learning style on user attention and memory. The study involved users performed the guided or unguided style learning in the virtual environment while user attention was measured through physiological sensors (EEG, ECG, and GSR) and an eye tracking system. The users experienced the five specific events in a virtual environment associated with different stimuli, while they were given more specific goals during the guided task whereas they were given more goal asking them to actively search for the interesting items during the unguided task. The subject's attentions workload, feelings, memories about VR experience were measured by using a variety of physiological sensors during the task, video analysis, and post test survey. The results showed that the unguided task followed by the guided task made a considerable learning effect by giving a preview effect to the user. Moreover, the guided task drew more user attention and mental workload than the unguided task did.

Improvement of Fetal Heart Rate Extraction from Doppler Ultrasound Signal (도플러 초음파 신호에서의 태아 심박 검출 개선)

  • Kwon, Ja Young;Lee, Yu Bin;Cho, Ju Hyun;Lee, Yoo Jin;Choi, Young Deuk;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.328-334
    • /
    • 2012
  • Continuous fetal heart beat monitoring has assisted clinicians in assuring fetal well-being during antepartum and intrapartum. Fetal heart rate (FHR) is an important parameter of fetal health during pregnancy. The Doppler ultrasound is one of very useful methods that can non-invasively measure FHR. Although it has been commonly used in clinic, inaccurate heart rate reading has not been completely resolved.. The objective of this study is to improve detection algorithm of FHR from Doppler ultrasound signal with simple method. We modified autocorrelation function to enhance signal periodicity and adopted adaptive window size and shifted for data segment to be analysed. The proposed method was applied to real measured data, and it was verified that beat-to-beat FHR estimation result was comparable with the reference fetal ECG data. This simple and effective method is expected to be implemented in the embedded system.