• Title/Summary/Keyword: 실측근사방법

Search Result 47, Processing Time 0.024 seconds

Temperature Variation during Construction in the Concrete Dam Body by Artificial Cooling (강제냉각(强制冷却)에 의한 콘크리트 제체(堤體)의 시공중(施工中) 온도변동(溫度變動))

  • Lee, Bae Ho;Kim, Hong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.39-48
    • /
    • 1989
  • The concrete temperature in mass concrete rises rapidly above the placing temperature owing to the heat given off by the hydrating cement. This temperature rise produces tensile stress and cracks which later become the cause of water leakage in concrete structures. It is essential, therefore, to reduce the interior heat of concrete dam given off by hydrating cement by artificial cooling. The present study aiming to study the temperature variations in mass concrete by pipe cooling, compars the actual measurements of Chungju Dam with the temperature calculated by Finite Difference Method(FDM), and it found that the results closely agree with each other. Based on these results, the analyses are performed simulate the interior temperature history of concerte dam made of type II (moderate heat) portland cement under various coditions.

  • PDF

Comparative analysis of methods for sediment level estimation in dam reservoir (댐 저수지의 퇴사위 결정 방법에 관한 연구)

  • Joo, Hong Jun;Kim, Hung Soo;Cho, Woon ki;Kwak, Jae won
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • This study examined how to determine the optimal sediment level in dam reservoir for efficient plan and operation of dam. Currently, Korea is applying a horizontally accumulated method for sediment level estimation for the safety design of dam and so the method estimated relatively higher level than others. However, the sediment level of dam reservoir should be accurately estimated because it is an important factor in assessing life cycle of a dam. The sediment level in dam reservoir can be determined by SED-2D model linked with RMA-2, horizontally accumulated method, area increment method, and empirical area reduction method. The estimated sediment level from each method was compared with the observed sediment level measured in 2007 in Imha dam reservoir, Korea and then the optimal method was determined. Also, the future sediment level was predicted by each method for the future trend analysis of sediment level. As the results, the most accurate sediment level was estimated by the empirical area reduction method and the future trend of sediment level variation followed the past trend. Therefore, we have found that the empirical area reduction method is a proper one for more accurate estimation of sediment level and it can be validated by the results from a numerical model of SED-2D linked with RMA-2 model.

A Study on the Improvement of Sailing Efficiency Using Big Data of Ship Operation (선박 운항 빅데이터를 활용한 운항 효율 향상 방법 연구)

  • Shin, Jung-Hun;Shim, Jeong-Yeon;Park, Jin-Woo;Choi, Dae-Han;BYEON, Sang-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.04a
    • /
    • pp.244-244
    • /
    • 2017
  • Recently, A study is actively underway to apply to various industries, which are one of the major changes in the key drivers of the industry 4.0.. The data generated by the ship include various indicators such as the fuel volume, engine power, ground speed, speed, speed, main engine rpm, DFOC, SFOC, and FOC. This paper analyzes the sensitivity of the Gathering data and analyzes the impact energy efficiency of the vessel operation by analyzing the influence among each parameter, using the mathematical models, you create an surrogate model using the math model, comparative analysis of actual measurement data and predictive results were analyzed. Through the use of big data analysis technology, it is possible to identify the sensitivity between the energy efficiency related variables of the ship, The possibility of utilization of fuel efficiency indicators using of the surrogate model is identified.

  • PDF

The Development of a Model to Predict Beach Evolution (해빈변형 예측 모델의 개발)

  • 안수한;김인철
    • Water for future
    • /
    • v.21 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • A model is developed to predict the long-term beach evolution near the long groin considering the combined effects of variation of sea level, wave refraction and diffraction. A numerical solution for this problem is solved by considering the equation as a system subject to the boundary condition for longshore transport rate. One possible method is the centered Crank-Nicolson type implicit scheme. The results which ard obtained by applying this numerical model at Songdo beach, Pohang are as follows. Owing to the approximation used in the calculation of the refraction and diffraction coefficients, the discrepancy between the predicted and actual shoreline occurs to the interior of long groin. However, the shape of shoreline at the exterier of long groins agrees well.

  • PDF

Aerodynamic Design of 10 kW-level HAWT Rotor Blades (10 kW급 수평축 풍력 터빈 로터 블레이드의 공력 설계)

  • Chang, Se-Myong;Lee, Jang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.884-890
    • /
    • 2007
  • The procedure for the aerodynamic design of the rotor blades for 10 kW-level HAWT (horizontal axis wind turbine) has been investigated to be practiced systematically. The approximately optimal shape was designed using an inverse method based on the momentum theory and the blade element method. The configuration was tested in the wind tunnel of the Korea Air Force Academy, and the data was compared with those obtained from the real system manufactured from the present design. From this research, the authors established the systematic technolo for wind turbine blades, and set up the technical procedure which can be extended for the future design of middle and large sized wind turbines.

A Runoff Model based on the Stream Magnitude (수로망(水路綱)크기를 이용한 유출모형(流出模型))

  • Lee, Won Hwan;Jun, Min Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.83-90
    • /
    • 1989
  • A runoff model was estabilished for the direct runoff hydrograph at each subareas by obtaining the storage coefficient based on stream magnitudes of geomorphic parameters. For this, the relationship between flowsection and channel distance from the outlet of each subareas was assumed as nonlinear equation, and compared with linear one. The applicability of the runoff model to the real watershed was tested for the Bochung river basin. The results of the analysis show that the model was approved to be used for the prediction of small watershed having no runoff records and a linear equation between flowsection and channel distance from the outlet of each subareas was more similar to the observed data for the upper subarea with a steep slope and small area, on the other hand, nonlinear equation for the lower subarea with mild slope and relatively large area.

  • PDF

Effects of Calculation Method of Surface Runoff on the Estimation of Flood in Urban Drainage Basin (지표면유출 해석방법이 도시 유역의 홍수량 산정에 미치는 영향)

  • Lee, Jong Tae;Yoon, Sei Eui;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 1994
  • The effects of the calculation method of surface runoff on the estimation of flood in urban drainage basin were analyzed in this study. In comparing with surface runoff methods. RUNOFF, ILLUDAS, SBUH and RRL were investigated. To route the flow in sewer/conduits EXTRAN was applied. The Kings Creek and Gray Haven drainage basin's measured data of rainfall and runoff were used in comparing the computed results. The results show that the greatest effect factor on surface runoff in urban small area is the concentration time. The results estimated by each model which are composed with EXTRAN show that the scheme for surface runoff gives considerable effect on the flood hydrograph in urban drainage system. RUN-EX method gives the most similar simulation results among the surface runoff models, and is more applicable for paved and unpaved basins than others.

  • PDF

Estimation of Discharge Using Mean Velocity Equations (평균유속공식을 활용한 하천 유량 산정)

  • Choo, Tai-Ho;Koh, Deuk-Koo;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.3
    • /
    • pp.265-273
    • /
    • 2010
  • This study proposed the method that can calculate discharge using hydraulic characteristics that can acquire easily-comparatively such as hydraulic radius, bed slope, depth to improve the stage-discharge curve equation considering only stage. Roughness coefficient n value and C value that hydraulic characteristics of rivers is reflected from Manning's equation and Chezy's equation using the measured data of the natural open channel in the report of Albert University estimated and calculated discharge on the basis of this. The method proposed in this study was calculated stunningly to measured discharge. And that compared with discharge by existent stage-discharge curve.

Calculation of Consolidation Period for Dredged Clay by Strain Theory (변형률 이론에 의한 준설점토의 압밀기간 산정)

  • Cheong Gyu Hyang;Won Yong Beom;Lee Myung Ho;Koo Bon Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Consolidation of dredged fill has become important task for site treatment. The variation of stratum thickness during consolidation processing needs to be taken into consideration since hydraulic fill would go through a much larger scale strain than land soil when it is subject to a load. In this study, the consolidation period considering the variation of stratum thickness was analyzed and compared the results with those of existing consolidation studies which did not consider the variation of stratum thickness. According to the results of the study, the consolidation period of the ground with a larger strain was calculated more close to observed value in case of Mikasa theory which takes the variation of stratum thickness into consideration.

Prediction of Ground Settlements due to Tunneling through Granular Soils (사질토층의 터널굴착에 따른 지반침하의 예측)

  • Bae, Gyu Jin;Kim, Soo Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.143-151
    • /
    • 1989
  • An equation to predict the ground settlement caused by tunneling through granular soils is proposed, The equation is developed modifying the Murayama equation using the results of elastic finite element analysis. Ground settlements at the underground structures in Korea and other countries are analyzed. From the results of the settlement analysis, it is found that the ground settlement associated with tunneling through granular soils is not only affected by tunnel geometry but also related to volume change characteristics of soils. It is also found that the widths of shear band, t in field conditions are 2 to 6 times greater than the values proposed in the Murayama's model. Calculated settlements using the proposed equation show reasonable agreement with the observed settlements and the results from the elasto-plastic finite element analysis. Murayama equation seems to underestimate the ground settlement.

  • PDF