• Title/Summary/Keyword: 실차실험

Search Result 100, Processing Time 0.028 seconds

The Effect of Active Chassis Vibration Control on the Engine Booming Noise (능동 샤시 진동 제어가 실내 엔진 부밍 소음에 미치는 영향)

  • 정병보;박만복;이용욱;박영진;이종원;강구태;채창국
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.991-995
    • /
    • 2002
  • The engine booming noise heard inside a vehicle's cabin is due to the engine vibration that's transferred to the chassis in the form of structural vibration and it often causes discomfort to the passenger. In an effort to seek out the possible relation between the engine booming noise and the engine vibration of a vehicle, a position on the engine mount was selected and the vibration transmission through the position was attenuated to observe the corresponding change in the noise level inside the cabin. A system consisting of an actuator and a hybrid controller that has both the feed-forward and feed-back capabilities was developed in order to carry out the experiment.

  • PDF

An Experimental Study on Brake Judder of Braking on Vehicle (실차 상태에서의 제동시 이상떨림 현상에 관한 실험적 연구)

  • Hong, Il-Min;Lee, Won-Sub;Lee, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.338-345
    • /
    • 2002
  • The study presents a new testing and analysis method for brake judder on vehicle. For the identification of the excitation mechanism of a brake judder, it is necessary to measure the dynamic brake disc geometry during braking on vehicle. The non-contact sensor system was used to monitor the brake disc geometry. Brake torque variation (BTV) caused by disc thickness variation (DTV) is the primary excitation for brake judder. The mechanical effects generating BTV are linked not only to initial manufacturing tolerances but also to uneven wear. Therefore, the brake disc geometry should be strictly managed to initial condition. The aim of this study has been to measure the dynamic DTV and runout on vehicle and analyze the influence of test parameters on brake judder and compare the disc component with vehicle matching about the DTV Profile. As a result of this study, The amplitude of brake judder is proportional to vehicle speed and fluid pressure fluctuation on braking. The major sources of brake judder are directly related to disc thickness variation and side runout variation of corner assembly (disc, hub. bearing).

Analysis of the Shifting Transients from the Passenger Car with an Automatic Transmission considering the Vehicle Model (차량 모델을 고려한 자동변속기 차량의 변속 과도 특성 분석)

  • 공진형;박진호;김정윤;임원식;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.154-162
    • /
    • 2004
  • In this study, a mathematical model for analyzing the shifting transients of the passenger car with an automatic transmission is proposed. The proposed model comprises a power transmission system and a vehicle system, which are coupled. In order to extract the modeling parameters, on-road car test is carried out. The model is composed of a detailed powertrain, an engine/AT housing, a simplified suspension system, tires and a vehicle body model. On the test, the vehicle accelerations and pitch ratio are measured by using accelerometers and a gyro sensor. The speeds, the brake signal, and the throttle position are taken from sensors which already exist in the vehicle. Considering natural ftequencies, which is calculated from the measured accelerations, and the characteristic equation, vehicle model parameters are identified. Dynamic behaviors during upshift or downshift are simulated using the proposed vehicle model. By comparing and analyzing the simulation result and on-road car test data, the vibration of the Engine/AT housing influences the shifting transients. The effect of model parameters are also studied. Among model parameters, the location of engine mountings influences the vibration of the vehicle body.

Research of Hydraulic Breaker with Rock Properties Predictability Using the ICT (ICT 융합기술을 활용한 암반특성 예측기능을 가진 유압 브레이커 개발에 관한 연구)

  • Yoon, Bok Joong;Lee, Kil Soo;Lim, Hoon;Lee, Ho Yeon;Lee, Myung Gyu;Kwon, Hyuk Jin;Kim, Kab Tae;Joo, Jin Moo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.683-689
    • /
    • 2017
  • We have carried out the development for hydraulic breaker which can be operated by optimal mode with ICT convergence technology. This developed system can predict the rock properties. Moreover, this system can maximize the energy efficient with intelligent control of hydraulic system. In order to provide the optimal impact force, this system can measure the descending depth of piston with the proximity sensor and discriminate the rock properties with the measuring data and control the piston stroke using solenoid valve eventually. In addition, we have developed the controller, display module and operating device for cascade (multi-level impact) system and applied the module which can communicate each system by wireless communications. In conclusion, the control system which can control the multi-level impact in accordance with strength of rocks has been developed and approved by several field tests.

An Experimental Evaluation of AEB Equipped Passenger Vehicle for the Pedestrian Collision Situations (AEB 장착 승용차의 보행자 충돌상황에 관한 실험적 평가에 관한 연구)

  • Shim, Jaekwi;Lee, Sangsoo;Sun, Chisung;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.202-210
    • /
    • 2019
  • This paper evaluated the performance of passenger vehicles with an AEB(Autonomous Emergency Braking) for various pedestrian-vehicle collision situations. The experiment was conducted at a speed of 30-60km/h on a 2017 3,000cc vehicle using a range of collision scenarios. The results showed that the test vehicle stopped before crashing a pedestrian dummy under all scenarios at 30km/h. The test vehicle reduced the speed but crashed the pedestrian dummy in all scenarios at 40-60km/h. From the paired t-test, there was a speed difference from the AEB system at a significant level of 0.05. In addition, the percentage of speed reduction was quite different for each scenario tested. It was concluded that the current AEB system can prevent pedestrian collisions at speed of 30km/h, but cannot prevent collisions with pedestrians at speed of 40-60 km/h.

Development of an Energy-Absorbing Device for a Crashworthy Sliding Post (감충성능을 갖는 슬라이딩 지주의 에너지흡수장치 개발)

  • Noh, Min-Hyung;Jang, Dae-Young;Lee, Sung-Soo;Han, Ki-Jang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.445-454
    • /
    • 2020
  • Non-breakaway crashworthy sliding posts move rigidly with a vehicle in the early stage of vehicle impact. During this stage, a vehicle imparts its linear momentum to the post, experiencing first-stage speed loss followed by second-stage loss from the crush of the energy-absorbing pipe (EAP) installed under the guide rail. An EAP is the key element of a crashworthy sliding post and should be confined to the post foundation. This paper covers the development of an EAP for a sliding post of 507 kg, which is a sliding post type frequently used in Korea for cantilever signs. Detailed explanations of the designs for an EAP structure using LS-DYNA impact simulation are given, and the crashworthiness of the systems are confirmed through crash tests. The EAP presented in this paper can accommodate impacts from 0.9 ton-60 km/h to 1.3 ton-80 km/h, and is applicable to foundations up to 2.7 m in length.

Experimental Verification of Adsorption Rate Feedback Control Strategy for Automotive Urea-SCR DeNOX System (실차 실험을 통한 승용 디젤엔진의 Urea-SCR을 위한 암모니아 흡장률 피드백 제어 분사전략 검증)

  • Shin, Byeonguk;Park, Jooyoung;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.397-407
    • /
    • 2017
  • In this study, a SCR system is employed to selectively reduce $NO_X$, which is a major cause of environmental pollution and issues in diesel engines. In particular, this paper focuses on the combination of feedforward injection strategies, depending on the NO/$NO_X$ ratio, and feedback injection control, using $NH_3$ coverage ratio, based on a SCR model. A 2.2 L passenger diesel engine, which is equipped with a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF), was used in the experiments. The developed control algorithm is implemented on a real-time computer with injection control algorithm. By analyzing the $NO_X$ emission measurement, the performance of the proposed injection control algorithm is verified.

Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile (충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성)

  • 한인환
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.107-115
    • /
    • 2000
  • We suggest a method which solves the planar, two vehicle collision reconstruction problem. The method based on the Principle of impulse and momentum determines the pre-impact velocity components from Post-impact velocity components, vehicle Physical data and collision geometry. A novel feature is that although the impact coefficients such as the restitution coefficient and the impulse ratio are unknown, the method can estimate automatically the coefficients and calculate the pre-impact velocity components. This reverse calculation is important for vehicle accident reconstruction, since the pre-impact velocities are unknown and Post-impact Phase is the starting Point in a usual collision analysis. However. an inverse solution is not always Possible with the analytical rigid-body impact model. Mathematically, one does not exist under the common velocity condition. On the other hand, our method has a capability of reverse calculation under the condition if the absorbed energy during the collision process can be estimated using the crush profile. To validate the developed collision reconstruction a1gorithm, we use car-to-car collision test results. The analysis and experimental results agree well in the impact coefficients and the Pre-impact velocity components.

  • PDF

An Antilock Brake Controller Design Using Hardware In-the Loop Simulation (Hardware In-the Loop Simulation을 이용한 미끄럼방지 제동제어기의 설계)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Hwang, Don-Ha;Lee, Se-Han;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2320-2322
    • /
    • 2004
  • 전자제어식 미끄럼방지 제동장치 (ABS, Antilock Brake System)는 차량의 급제동시 발생할 수 있는 바퀴의 슬립을 방지하여 차량의 제동거리를 단축시키고 주행 성능을 향상시키는 차량 내 안전장치이다. 지난 몇 년 동안 공압식 제동시스템을 사용하는 대형차량에 적합한 미끄럼방지 제동 제어기를 연구해 왔다. 이 제어기는 바퀴의 슬립율과 그 변화량을 이용한 제어 법칙을 유도하여, 제어 파라미터로 사용하고 있다. 이러한 제어 파라미터의 튜닝에는 맡은 반복적인 실험이 요구된다. 이러한 요구에 부응하기 위하여 차량의 제동을 실시간으로 모사 할 수 있는 HILS (Hardware In-the Loop Simulation) 시스템을 개발, 구축하였다. 개발 HILS는 공압식 브레이크 시스템 및 14 자유도를 가지는 차량 동역학 모델 및 타이어-바퀴 동역학을 소프트웨어 모델로 사용하고, 개발 중인 전자제어식 미끄럼 방지 제동 제어기를 하드웨어로 사용하여, 바퀴속도 센서 신호 모의 장치 및 공압 엑추에이터 모의 신호등의 인터페이스 장치를 사용하여 제동중인 차량의 상태를 실시간으로 시뮬레이션 및 감시할 수 있다. 이 개발 HILS를 이용하여 제동 제어기의 제어 파라미터의 튜닝을 짧은 시간에 성공적으로 끝낼 수 있었을 뿐만 아니라, HILS 실험을 마친 제어기는 미끄럼 방지 제동 시험장에서 실차 주행 시험을 무사히 마침으로써, 개발 기간과 비용을 절감할 수 있는 하드웨어를 이용하는 시뮬레이션의 효용성을 간접적으로 증명하였다.

  • PDF

Lateral Control of An Autonomous Vehicle Using Reinforcement Learning (강화 학습을 이용한 자율주행 차량의 횡 방향 제어)

  • 이정훈;오세영;최두현
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.76-88
    • /
    • 1998
  • While most of the research on reinforcement learning assumed a discrete control space, many of the real world control problems need to have continuous output. This can be achieved by using continuous mapping functions for the value and action functions of the reinforcement learning architecture. Two questions arise here however. One is what sort of function representation to use and the other is how to determine the amount of noise for search in action space. The ubiquitous neural network is used here to learn the value and policy functions. Next, the reinforcement predictor that is intended to predict the next reinforcement is introduced that also determines the amount of noise to add to the controller output. The proposed reinforcement learning architecture is found to have a sound on-line learning control performance especially at high-speed road following of high curvature road. Both computer simulation and actual experiments on a test vehicle have been performed and their efficiency and effectiveness has been verified.

  • PDF